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The Brachistochrone Problem

The Brachistochrone problem represents a classic optimisation problem,
first posed by Johann Bernoulli in 1696 and has been proven in many
unique ways since.

Formulating the Brachistochrone Problem

Given two points A and B in a vertical plane, what is the curve traced out
by a point acted on only by gravity, which starts at A and reaches B in the
shortest time.

We will, of course, be presenting a solution based upon the Calculus of
Variations in this presentation.
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Modelling

So we have to first consider what it means for this problem to be solved.

We are specifically after a curve of fastest descent down a physical path
(the solution curve), so let us establish some restrictions:

1 We will begin our curve at the point A = (x , y) and end at a point
B = (x ′, y ′) where x ′ � x

2 Additionally, we suppose y > y ′ for the length of the curve

3 and, as with many physical problems with analytical solutions, we
choose to disregard friction. (At least initially)
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A start

We should begin by formulating exactly what this curve may look like by
equating the relevant forces, though we may happen upon two (or three)
solutions by intuition.

Given that we are attempting to minimise time, and
we know

time =
distance

speed

so of course we could try minimising either the distance travelled, or
maximise the speed at which we travel.
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Min-maxing Speed and distance

In this visualisation, we have in red the shortest distance between A and B
and then in blue we have some version of the ‘fastest velocity’, where ~g
acts greatest at the start providing plenty of acceleration.

Unfortunately, neither of these happen to be optimal solutions to the
problem, though we can now turn to the Calculus of Variations.
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Equating forces

Equating the kinetic energy and gravitational potential energy we have:

1

2
mv2 = mgh

=⇒ v =
√

2gh

and by our framing of the situation we have that h = y(x) and so

v(s) =
√

2g y(x)
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Then we can start by considering the time taken to travel along the curve
y = y(x) as a functional:

T [y ] :=

∫ B

A
dt =

∫ B

A

ds

(ds/ dt)
=

∫ B

A

ds

v(s)

Then given that ds2 = dx2 + dy2 we arrange to obtain ds =
√

1 + (y ′)2

and use our v(s) =
√

2g y(x)
Fixing A = (0, 0) and B = (a, b) to clear up notation, we have that the
imposed boundary conditions are y(0) = 0, y(a) = b∫ a

0

√
1 + (y ′(x))2√

2g y(x)
dx = T [y ]

and the attempt to minimise this functional is equivalent then to the
Brachistochrone problem
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Necessary Results

The First Variation

We define a functional to be of a specific form, namely:
Let J : C2[a, b]→ R be a functional of the form

J[y ] =

∫ b

a
f (x , y , y ′)dx

where f has continuous second order partial derivatives with respect to all
its arguments.
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Necessary Results 2

The Euler-Lagrange Equation

Let J : C2[a, b]→ R be a functional of the form

J[y ] =

∫ b

a
f (x , y , y ′)dx

Let S = {y ∈ C2[x0, x1] : y(x0) = y0, y(x1) = y1} where (y0, y1) ∈ R2

Then if J[y ] is ‘stationary’ at y ∈ S we have:

∂f

∂y
− d

dx

∂f

∂y ′
= 0 ∀x ∈ [a, b]
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A Solution

The Brachistochrone functional

f (x , y , y ′) =

√
1 + (y ′(x))2√

2g y(x)

We observe that there is no explicit x component to f and now introduce
a corollary of the Euler-Lagrange equation, namely:

Beltraimi Identity

For functionals of the form

J[y ] =

∫ b

a
f (y , y ′)dx

the Euler-Lagrange equation reduces to the Beltrami identity:

f − y ′
∂f

∂y ′
= Constant
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A Solution

f (x , y , y ′) =

√
1 + (y ′(x))2√

2g y(x)

So computing from here we have that

∂f

∂y ′
=

y ′√
(1 + (y ′)2) 2g y

Hence, by the Beltrami identity we have:

f − y ′
∂f

∂y ′
= C√

1 + (y ′(x))2√
2g y(x)

− (y ′)2√
(1 + (y ′)2) 2g y

= C

=⇒ C =
1√

(1 + (y ′)2) 2g y
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A Solution

C =
1√

(1 + (y ′)2) 2g y

Squaring both sides and rearranging we get:[
y + y

(
dy

dx

)2
]

=
1

2gC 2
= 2k

Equivalently:
y + y (y ′)2 = 2k

for k > 0 a constant. Which provided with y(0) = 0 can be solved
parametrically by: (

x
y

)
=

(
k(t − sin(t)
k(1− cos(t)

)
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Validating the solution

We now will check this solution by investigating its “second variation”

The Second Variation

Let J[y ] =
∫ x1
x0

f (x , y , y ′)dx , where y(x0) = y0, y(x1) = y1 and f is thrice
continuously differentiable in all its arguments, then:

δ2J[η, y ] =

∫ x1

x0

{
η2
(
∂2f

∂y2
− d

dx

∂2f

∂y∂y ′

)
+ (η′)2

∂2f

∂y ′∂y ′

}
dx .

Minimum condition

Introducing H = {η ∈ C2[x0, x1] : η(x0) = η(x1) = 0} we have that if y is
a local minimum then

δ2J[η, y ] ≥ 0, ∀η ∈ H
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Validating the solution

First remarking that it should make no difference should we ignore the
constant

√
2g found in the integrand of the T [y ] functional and then:

∂f

∂y ′
=

y ′√
y(1 + (y ′)2)

,
∂f

∂y
= − f

2y

Then we compute the second derivatives

∂2f

∂y ′∂y ′
=

1√
y(1 + (y ′)2)3

,
∂2f

∂y∂y ′
= − 1

2y

∂f

∂y ′
,

∂2f

∂y∂y
=

3f

4y2
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Validating the solution

Ultimately, we can rewrite

δ2J[η, y ] =

∫ x1

x0

{η2(α) + (η′)2(β)} dx .

for α =
(
∂2f
∂y2 − d

dx
∂2f

∂y∂y ′

)
and β = ∂2f

∂y ′∂y ′ and then by computation resolve

that for

α =
1

2y2
√

y(1 + (y ′)2)

∣∣∣∣
y=y0

> 0, β =
1√

y(1 + (y ′)2)3

∣∣∣∣
y=y0

> 0.

And so δ2T [η, y0] ≥ 0 and hence by our previous remark, we have that the
cycloid is at least a local minimiser of T [y ].
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With Friction

I will not be discussing the case for friction here but a solution relying on
the Calculus of Variations can be found here:

N. Ashby, W. E. Brittin, W. F. Love, and W. Wyss. Brachistochrone with
Coulomb friction.
Amer. J. Phys., 43(10):902–906, 1975.

And that concludes the presentation. Thank you for your time

Steven Edwards On the Brachistochrone Problem December 14, 2021 19 / 19


	The Brachistochrone Problem
	Necessary Results
	Solving the Problem

