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What's an Euler Characteristic?

To start, we introduce the Euler Characteristic, x as a ‘topological
invariant of finite simplicial complexes'.

Definition

A finite simplicial complex is a finite set X with a collection A of
non-empty subsets of X such that

Q@ if Ac A and B C A then B € A and,
@ for each x € X the singleton {x} € A.

So that we can think of X as a set of vertices with subsets of size k + 1
in A being called k-simplices.
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Example
X
X3
Xa
X1

Figure: A set X of 4 vertices.

With collection:

{Xl}a {X2}7 {X3}’ {X4}a

{X47X2}7 {X17X2}7 {X17X3}7 {X27X3}7
{X1>X27X3}’

A:

ghtings and x
o
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Euler Characteristic of a finite simplex

We can define the Euler characteristic on a finite simplicial complex with
the following formula

X0 = Y (-1

AcA

So that in our example we have that x(X) =4—-4+1=1.
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Rota’s Contribution

In 1964 Rota extended the Euler
characteristic to finite posets. He
noted that we can define the
collection A from finite simplicial
complexes as a sub-poset of (2%, c).

Figure: Rota sometime later in 1970
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Euler Characteristic of a Poset

Consider a sequence of points, pg < p1 < ... < p, of length nin P. We

call such a sequence a chain. Then a finite poset, P, has Euler
characteristic:

X('D) — Z(_l)#chains of length n

neN
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x from p

Rota also showed us that Euler characteristics could be derived from
“Mébius Inversion” in posets.

Defining a new poset P of P with an additional minimal element 0 and
maximal element 1. Then

x(P) = pp(0,1) + 1.

Which connected existing theory on incidence algebras and the
Phillip Hall theorem from combinatorics relating £(0, 1) of an incidence
algebra to the number of chains.
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Leinster and onward

So in the late naughties, Tom Leinster produced his paper relating Euler
characteristics to finite categories. Which we ought to define here as they
will be used for the remainder of the presentation.

Definition
A finite category A is
@ A finite collection Ob(A) of objects,

@ A finite collection of arrows (or morphisms) A(a, b) for each
a, b € Ob(A) that satisfy a composition law, i.e. for each
a, b, c € Ob(A) a map

A(a, b) x A(b,c) — A(a, )

@ An identity arrow is also required, 1, € A(a, a) such that 1,060 =0
for all 8 € A(b, a) and similarly o1, =0 V0 € A(a, b).
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The R(A) Q-Algebra

Definition

Let R(A) be the Q-algebra of functions Ob(A) x Ob(A) — Q with
point-wise addition and convolution as product. That is for functions
0, € R(A) and objects a, b, c € Ob(A) we have the following properties

o (6+ ¢)(a,b) =06(a,b) + ¢(a, b) as addition,
o (k-0)(a,b)=k-0(a,b) for k € Q, as scalar multiplication,

@ Then finally, we have convolution defined by:

(6-¢)(a,c)= D 6(a b)p(b,c).

b€ Ob(A)
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Special functions

The multiplicative identity element of the incidence algebra is denoted by
the Kronecker Delta §(a, b) € R(A) and is evaluated as follows:

5(a,b) = 1 ifa=5»b
)0 ifa#b.

We also have the zeta function:

((a; b) = [A(a, b)|-

If ¢ is invertible in R(A), then the category has M&bius inversion:

pa =p=¢"

Z w(a, b)C(b,c) =d(a,c) = Z ¢(a, b)u(b,c) Va,ce€A.

b € Ob(A) b € Ob(A)
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Existence of u

Unfortunately, we don't always get a u for a given category. So some
conditions must be put in place. Namely that we need a type of category
called a ‘skeletal’ category:

Definition (Skeletal Category)

A finite category A is skeletal if and only if all isomorphisms are identities.

Note: a=b = a = b always, whilst A skeletal such that
ab — a=ob.
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A formula for p

Though we won't prove or fully explain it today, we can take this skeletal
property in conjunction with a handful of other properties to produce a
formula for computing the Mobius inversion of a finite category A:

Theorem

Let A be a finite skeletal category in which the only idempotents are
identities. Then A has Mobius inversion given by

HED = D G JAua]
paths a— b

for a = ayp and b = b, with Aut(a) being the automorphism group of
a € A and where the sum runs over all n > 0 and paths for which
ag, . - - ,an are pairwise distinct.
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Leinster's Weightings

One of Leinster's compelling contributions was the development of the
‘weighting’ and ‘coweighting’ on a finite category.

Let A be a finite category. A weighting on A is a function
k® : Ob(A) > Q:Va€A,

> ((a, bk =1
b

where ((a, b) = [A(a, b)| and k*® denotes the ‘weight’ of e € Ob(A).
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Relating Weighting and Inversion

Lemma

A has Mobius inversion <= A has a unique weighting <= A has a
unique coweighting; they are given by:

k=Y p(a,b), k=> pu(a,b)
b a
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Weightings and Coweightings

Let A be a finite category with weightings and coweightings k® and ke
respectively. Then ) k? =3 ka.

zb:kb:z:(ZkCab> Zk (Zg(ab >:za:kat]
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Computing Weightings

By hand! Boo!
MAPLE
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Euler Characteristic y

Definition
A finite category A has Euler characteristic if it admits both a weighting
and coweighting. Its Euler characteristic is then

X(A):Zkazzkae(@

for any weighting k® and coweighting k.
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Computing Euler Characteristic y

By hand! Boo!

MAPLE



The End!
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