MATHS552:
Euler Characteristics of Finite Categories

Steven Edwards
Supervisor: Dr. Jon Woolf

May 18, 2022

Contents

1

2

Introduction

Categories and Mobius Inversions

2.1 Categories
2.2 Mobius inversion Lo o
2.3 Finding Mobius Inversions L.
2.4 Application of the Mobius function

Weightings and Euler Characteristics

Colimits

Maple Program

A.1 Computing the (co)weightings of a finite category
A.1.1 Code Commentary
A.1.2 Example input/output L.

A.2 Computing x(A) of a finite category
A.2.1 Code Commentary
A.2.2 Example input/output

Statement of Originality

16
16
20

27

31
31
31
32
33
33
34

35

1 Introduction

We may begin by introducing Euler characteristics as a topological invariant
on finite simplicial complexes, depicting k-simplices as being those subsets of
size k+ 1 of a collection (A) of non-empty subsets of some finite set X. Then
we define the Euler characteristic of X as follows: y(X) = Y, (—1)A=1,
the alternating sum of the number of £ simplices. This simple formula cap-
tures the ‘vertices minus edges plus faces’ formula that first exposes many of
us to x on simple 2D and 3D shapes.

Though, this dimensionless property extends to many other formulations
and reaches rather widely into different areas of mathematics. For exam-
ple, one may encounter Euler characteristics in theorems such as the Gauss-
Bonnet theorem, linking y to differential geometry and smooth manifolds or
perhaps from the topological sense learning of genus’ and later applying this
in more unusual or niche settings such as complex analysis via the Riemann-
Roch theorem or perhaps more directly the Riemann-Hurwitz formula. In
addition, as Leinster points out in [Lei08], it is also true that Euler Char-
acteristics can be tied to combinatorics via Mobius inversion of posets as
was presented by Gian-Carlo Rota and contemporaries. One can even find
links to crystallography via the late John Conway’s influence; making use of
orbifolds and their Euler characteristics to discuss the relevant 17 wallpaper
groups.

Given the pervasiveness of this property, it is no surprise then that we
should look to learn of more novel contexts in which x exists. This paper is
modelled after Leinster’s ([Lei08]) which was similarly motivated and looks
to extend Euler characteristics to ‘finite categories’.

Leinster’s paper was, however, targeted at an audience already familiar
with categories. We instead take the route of walking through and introduc-
ing much of the prerequisite Category Theory as it pertains to the upcoming
theory as presented by Leinster. In addition, we provide further exposition
to many of the proofs along the way to better guide the reader through the
logic and arguments present in the initial paper which was rather brief at
times.

In this paper, we shall walk through definitions of finite categories, fac-
torisation systems, numerous types of functors, equivalences and adjoints,
to name a few, all in service of proving facts about Mobius inversion as it
applies to categories and to build up the required theory of ‘weightings’ and
‘coweightings’ required to construct the Euler characteristic of a finite cate-
gory. Along the way we shall present expository examples and discuss some
of the motivations behind the theory being presented. In the final chapter we
present colimits and discuss how the theory presented can be applied right

away to inform us of the cardinality of colimits.

Though not necessarily referenced directly, both [Leil4] and [Sim11] as
well as [Lan78] were tremendously useful in the process of developing an
understand of the underlying category theory.

In Appendix A one will find MAPLE procedures that automate the nec-
essary calculations of ‘weightings’ as well as that of Euler characteristics of
finite categories. As there does not seem to be any well supported method
of inputting syntax-highlighted MAPLE code into KTEX, I have produced a
language style file to work with the 1istings package to closely match that
of the MAPLE’s code-edit environment.

2 Categories and Mobius Inversions

2.1 Categories
We begin by introducing finite categories.

Definition 2.1 (Finite Category). A finite category A is
1. A finite collection Ob(A) of objects,

2. A finite collection of arrows (or morphisms) A(a,b) for each a,b €
Ob(A) that satisfy a composition law, i.e. for each a,b,c € Ob(A) a
map

A(a,b) x A(b,c) — A(a,c)

which we can visualise as

which is associative, namely, given 8 : a — b, p : b - cand ¢ : ¢ = d

we have:

0 @ P
~ ~ ~——
a b c d

such that ¥ o (pof) = (Y op)ob,

3. An identity arrow is also required, 1, € A(a,a) such that 1,06 = 6 for
all @ € A(b,a) and similarly o 1, = 6 V0 € A(a,b).

Before moving into some examples of categories we quickly discuss en-
domorphisms.

Remark 2.2. An endomorphism of @ € Ob(A) is an arrow in A(a,a). If an
endomorphism @ is invertible, that is, if

fobh ' =1,

JHte A :
=" € Ala,a) {9_100:1(1‘

then we call # an automorphism. We denote the subset of automorphisms
of a by Aut(a) C A(a,a).

We can now begin to look at some simple examples.

4

Example(s) 2.3. Here are two examples of finite categories.

1. Consider a finite group G, then we may consider it as a category, G,
consisting of a single object @ € Ob(G). Given that we only have
one object we can observe that any arrow must take this object to
itself and is thus an endomorphism. Every endomorphism of e is an
automorphism, i.e. G(e,0) = Aut(e) = G. We note then that any
composition of arrows is defined. Taking G to be C}, the cyclic group
of order 3, consisting of elements {1, g, ¢*}. Then we may portray the
corresponding category G¢, in the following diagram:

IC.OQ2
.

with arrows representing maps from e — e. Alternatively, as is por-
trayed, the different elements of the group.

2. Consider a category A consisting of the following objects for some fixed
n €N,
Ob(A) = {subsets of {1,...,n}}.

The arrows are given by

Amw%={@ ifadb

has one j
element if a - b

which also uniquely determines the composition law. Suppose we fix
n = 2 to be our example. Then the category has objects Ob(A) =
{0,{1},{2},{1,2}} and the following diagram depicts all non-identity
arrows,

{1,2}

P RN

{1} {2}

7

0

From this diagram we can see that there is a unique composition law.

2.2 Mobius inversion

To begin, we introduce the finite incidence algebra R(A) of a finite category
A. When the category A is evident, we simply write R.

Definition 2.4 (The R(A) Q-Algebra). Let R(A) be the Q-algebra of func-
tions Ob(A) x Ob(A) — Q with point-wise addition and convolution as
product. That is for functions 0, ¢ € R(A) and objects a,b,c € Ob(A) we
have the following properties

e (0+ ¢)(a,b) =6(a,b) + ¢(a,b) as addition,
o (k-0)(a,b) =Fk-0(a,b) for k € Q, as scalar multiplication,

e Then finally, we have convolution defined by:

0 - Z@ab o(b,c).

The multiplicative identity element of the incidence algebra is denoted by
d(a,b) € R(A) and is evaluated as follows:

5(a,b) 1 ifa=0b
a =
’ 0 ifa#b.

So taking a convolution involving d(a,b) we may eliminate all sums over
b : b # ¢ (as these would involve multiplying by a scalar zero), giving

(0-6)(a,c) =3 4 conm) (@, b)d(b, c) = 0(a, c). Similarly 606 = 0.

Remark 2.5. If we take some arbitrary ordering of the finite number of ob-
jects of A, the incidence algebra is isomorphic to the algebra of matrices
with elements in Q of size |[Ob(A)| x |Ob(A)| with matrix multiplication as
products, which is to say explicitly: R(A) = Mob(a)|x|oba) (Q).
Remark 2.6 (Functions in the R(A) Q-algebra). Within R(A) we also have
the zeta function which is defined to be ((a,b) = |A(a,b)|: denoting the
number of arrows between objects @ and b. If ¢ is invertible in R(A), then
we say that the category has Mobius inversion and denote the inverse as
pa = p=C"".

Taking note that the Mobius inversion inverts the zeta function, their
convolution is the Kronecker-§. Explicitly:

Z w(a,b)((b,c) = d(a,c) = Z C(a,b)u(b,c) Va,c e A.

be Ob(A) be Ob(A)

6

In Example 2.3-(1) we introduced a finite category G, with one object so
R(G) = Q. The zeta function is ((e,e) = |G| (the size of the group) with
5(e,e) = 15 and so we may compute pug = (! = ﬁ

We now introduce skeletal categories, first by making note of what is
meant by an isomorphism between objects.

Definition 2.7 (Isomorphic Objects). We say a,b € Ob(A) are isomorphic
if there are arrows of the form

p € A(b,a)

such that fop =1, and pof = 1,. If @ and b are isomorphic we write a = b,
with a = a,Va € Ob(A) via the identity.

Again, note that in Example 2.3-(1) all arrows are isomorphisms, because

~Y

each element in a group G has an inverse. So @ = e via every morphism in
G(e,0).

We can now define skeletal categories which play a vital role.

Definition 2.8 (Skeletal Category). A finite category A is skeletal if and
only if all isomorphisms are identities. Note: a = b = a = b always,
whilst A skeletal such that a b — a =b.

However as we have shown for G above, we can have non skeletal cate-
gories such that a =0 <= a = b holds.

Our motivation for introducing skeletal categories is so that we may com-
bine Remark 2.5 and Definition 2.8. As a skeletal category has no redundant
isomorphisms we see that there are no duplicate rows in the matrix of (.

2.3 Finding Mobius Inversions

It is not such a simple task to find the Mobius inversions of some finite
categories without first developing some prerequisite tools. We were in good
luck that it happened to be simple for the category defined from a finite
group, G, but we are not always so fortunate, nor should we be so bold as to
assume that such an inversion can be found at alll! Hence the remainder of
this section will be used to introduce and demonstrate a handful of techniques
which will empower us to find these inversions.

Definition 2.9 (n-paths, [Lei08]). Let n > 0 and let A be our finite category,
with a,b, € Ob(A). An n-path from a — b is the diagram in A

01 02 0
a = ag S ay s .. —>a,=2b

This is a circuit if @ = b and is non-degenerate if no §; € Ob(A) is an
identity.

Then before we introduce the following lemma we define what is meant
for an arrow to be idempotent.

Definition 2.10. An arrow 6 € A(a,a) is idempotent if 0 6 = 6.

Lemma 2.11 ([Lei08]). The following conditions on a finite category, A, are
equivalent:

a. Every idempotent is an identity.
b. Every endomorphism in A is an automorphism.
c. Bvery circuit in A consists entirely of isomorphisms.

Proof: (a. = b.). Suppose ¢ € A(a,a) is an endomorphism. By the Pi-
geonhole principle, there exists some m € N and infinitely many n € N such
that ™ = ¢™. Let us choose n > 2m with ¢ = ¢™. Then

gO(nfm)m — ((pm>nfm
(™)™ - (m)n e

Hence ™™™ is an idempotent. Hence o»~™™ = id,. Therefore ¢ is an
isomorphism (with inverse @®~™m=1),

Proof: (b. = ¢.). Assume every endomorphism is an automorphism. If we
have a circuit (equivalently an n-path whose composite is an endomorphism)

such that 6,, 00, 10...0; € A(a,a),

o N

Om 03
Qm— 1

arn 1 /

Then by assumption this is an automorphism i.e. Jp € A(a,a) with
(pobpob, 10...)00; =1,

So we see that 6 has a left-inverse. A similar argument considering 6, 0 6,, o
-+ 06, shows that 6; also has a right-inverse. Hence we can see that each 6;
has both left and right inverse.

Proof: (c. = a.). Suppose ¢ € A(a,a) is an idempotent, i.e. pop = ¢
and consider a circuit with one arrow.

a)¢

Then by assumption this circuit consists entirely of isomorphisms. Hence by
invertibility ¢ is self inverse and ¢ = popo ™t = poe ! =1, So each
idempotent is an identity. O

We now introduce the following Theorem 2.12 that gives us one method
of identifying Mobius inversions for skeletal categories.

Theorem 2.12. Let A be a finite skeletal category (Definition 2.8) in which
the only idempotents are identities (Lemma 2.11 (a.)). Then A has Mébius
wmwversiton given by

(="
wla,b) =
(a,5) ;0 | Aut(ag)| - - - |Aut(ay)|
paths a—b
for a = ag and b = b, with Aut(a) being the automorphism group of a € A
and where the sum runs over all n > 0 and paths (Definition 2.9) for which
ag, - - . , Ay are pairwise distinct.

Proof. Since A is skeletal, and all idempotents are identities, we conclude
that all circuits must be of the form:

VN
A

As there are no extraneous isomorphisms (A is skeletal) and we have that
Oof =0 for § = A(a,a) (from idempotency) it must be the case that the
only arrows formed along a path create a circuit with all 6, = --- =60, = 1,.
Thus there are no non-degenerate circuits. We now recall that we are in the
R(A) Q-algebra (as in Definition 2.4) and introduce the following result to
assist in the proof.

Lemma 2.13. Let A be a finite skeletal category in which the only idempo-
tents are identities. Then:

a,b
Z |/;1(ut(c;| =d(a,c) — pl(a,c)

fora,c e A.

Proof of Lemma 2.15. We first start by presenting a visualisation of the pos-
sible paths from a — ¢

1. We have direct paths
a—> ¢

of which there are |A(a, c)|, or

2. We have n-paths (possibly of length 0; i.e @ = b in the following dia-
gram) which are of the form:

P Q

with there being |A(b, ¢)|-many paths from b to ¢ and n-paths from a
to b.

10

With this in mind, our summation), , Legeh(bie) % is working over all
such n-paths of length n > 0 and for the second kind of path as described
above. Hence, by use of the fact that there are no non-degenerate circuits,
we note that our summand has p(a,b) = 0 for all pairwise distinct a; # ¢
and p(a,b) = (—1)" hence the sum is equal to |Aut(Tamay When a = ¢. Which is
to say that it is exactly equal to what we define as the Kronecker-delta for a
and ¢ minus the inversion for when they are equal, hence §(a, ¢) — p(a,c). O

Now we may return to our original proof and write out the convolution
of 1 and (as follows:

(- ¢)(a,c) Z,u (a,b)((b,c) (1)
beA
= M(CL? C)C(C, C) + Z LL(CL, b)g(bv C) (2)
b#c
— oAt + Auwo] Y AEE
géA?é)

—Aut(@)] { e+ 3 ABD ()

|Aut(c)|
b:b#c, geA(b,c)

I Aut(e d(a,c)
— Aut(o) {—, Aut((:)‘} (5)
=d(a,c) (6)

We begin in line (2) by pulling out the b = ¢ term from our summation.
Then we note in line (3) that any endomorphism ((c, c) of ¢ is going to be
an automorphism by Lemma 2.11. So we may write ((c,¢) = |Aut(c)| then
include it in and around our summand. In line (4) we factor out |[Aut(c)]
and note that as in Lemma 2.13 above we may collapse the summation into
its form d(a, c¢) — p(a,c) as in (5). Then as expected, (¢ - ()(a,c) = (a,c).
As a result, by acting over each distinct path ag # ... # a, # ¢ we can
rewrite the inversion part of the summand in the following alternative form:

plab) _ (-1
Z |Aut(c)| Z |Aut(ag)| ... |[Aut(a,)||Aut(c)|

b:b#c,geA(b,c)

This concludes what we wish to show. O

Expanding on Theorem 2.12, we make use of the other equivalences in
Lemma 2.11 to present the summation in another way.

11

Corollary 2.14 ([Lei08, Corollary 1.5]). Let A be a finite skeletal category
in which the only endomorphisms are identities (Lemma 2.11 (b.)). Then A
has Mobius inversion given by

p(a,b) = Z(—l)"|{n0n—degenemte n-paths from a to b}| € Z

n>0

Proof. Non-degenerate paths are those for which no 6; makes is an iden-
tity arrow within an n-path (Definition 2.9). By the equivalences present
in Lemma 2.11 (b.and c.) we know that if every endomorphism is an au-
tomorphism (and also an identity) that any circuit contains distinct a; with
isomorphisms 6;. n

Definition 2.15 (Epi-mono factorisation [ncal). Given a category A we take
a “factorisation system, (E, M)” to be a pair of classes of maps, £ and M
such that every arrow 6 € A(a,b) factors § = r ol with the arrows [€ E
followed by r € M which must satisfy the following conditions:

1. The factorisation is unique up to isomorphism.
2. EF and M contain all isomorphisms and are closed under composition.

If we take our left class to be the class of epimorphisms, &, (right-cancellative
arrows) and the right class that of monomorphisms, M, (left-cancellative
arrows), we obtain the Epi-mono factorisation system (£, M) for A with
A(a,b) 5 0 = me for e € £ and m € M. However, this may not always exist.

By the conditions of any factorisation system, we know that as the fac-
torisation is unique up-to isomorphism that any other pair, i.e. ¢ € £ and
m’ € M, has unique isomorphism ¢ : C' — D with § = me : a —+ C' — b and
0 =m'e’ :a— D — b so that the following diagram commutes:

e
S A

It may be useful later that as [Sim11, p.50] states, for ‘appropriately nice
categories’ (often those for which the following notions are well understood),
an injective map is a monomorphism while a surjective map is an epimor-
phism.

12

Theorem 2.16. Let A be a finite skeletal category with an epi-mono factori-
sation system (Definition 2.15). Then A has Mdébius inversion given by

#0D) = D attao) -~ At

where the sum is over all n > r > 0 and paths (Definition 2.9) such that

ag, . . ., a, are distinct, a,, ..., a, are distinct with corresponding fi,..., f, €
M and friq,..., fn €E.
Proof. See [Lei08]. O

This gives us an alternate way of computing the Mobius inversion of
categories so long as they hold an epi-mono factorisation (which is fairly
common and often well known).

2.4 Application of the Mobius function

We now present definitions for more key concepts in category theory, namely
that of functors. In particular, we introduce the notion of representable
functors and adapt notation from [Leil4] to that which is more familiar to
this paper. Together with the Mobius function we are able to determine the
coefficients that define a familially representable functor in Proposition 2.19.

Definition 2.17 (Functors). Let A and B be categories. A functor X : A —
B consists of

1. A function
Ob(A) — Ob(B)

which is written as A — X (A);
2. For each A, A’ € A, a function
A(A,A) = B(X(A), X(A)),

which is written as f — X(f), satisfying the following axioms:

(a) X(f'of)=X(f")oX(f) whenever A LNV NV in A;
(b) X(14) = 1x(a) whenever A € A.
For example if we take a functor A —X— Set this maps a € Ob(A) —
Xa (aset), and a € A(a,b) - Xa : Xa — Xb such that X(id,) = id(X,),
and X(foa)= X3 Xa.

13

Definition 2.18 (Representable Functor). Let A be a finite category with
a € A. We introduce a functor A(a,—) from A to the category Set (the
category whose objects are sets with arrows which are functions between
sets):

A(a,—) : A — Set.

For a given object, b € Ob(A), we ‘fill in the blank’ (denoted with ‘—’) as
A(a,b). Then, for a map 6 — 0" we define

A(a,) : Ala,b) — A(a,l)

by — +— #o—, V— :a — b. Then we say a functor is representable if
X =2 A(A, —) for some A € A.

Building further, we call X familially representable if

X = Z r(a)A(a, —)

acOb()A

for some r(a) € N where) r(a)A(a,—) denotes the disjoint union of r(a)
copies of the sets A(a, —) for a € Ob(A).

Proposition 2.19. Let A be a finite category with Mébius inversion and let
X : A — Set be a familially representable functor satisfying

X 23 r(a)la,~)
for some natural numbers r(a), (a € A). Then

r(a) =Y |Xblu(b,a) Va € A.

Proof. By definition of convolution in the R(A) Q-algebra we remind our-
selves of the following: (Cu)(c,a) =>4 C(c,b)pu(b, a). Replacing the ((c,b)
with [A(c,)| we note >, _, [A(c,b)|u(b,a) = 0(c, a). Which is defined to be
1 if ¢ = a and 0 otherwise.

As above, we define a familially representable functor Xb to be of the

14

form: Xb=>"_r(c)A(c,b). By explicit computation, we then show:

S 1Xbluba) =Y

=2 (ZT(CHA(C, b)\) (b, a)
=> r(e) > _1A(e,b)|u(b, a)
=> " r(e)d(c, a)

C

= r(a),

(b, a)

> " r(e)Ale,b)

C

as desired.

15

3 Weightings and Euler Characteristics

In this section we present a method of computing the Euler characteristic
of a finite category and look to how additional category theory can aid our
ability to uncover and compute Euler characteristics. We start with the
notion of weightings which generalise the usefulness of Mdbius invertibility
to categories which do not have an explicit inversion but may have Euler
characteristic regardless.

3.1 Weightings

We start by introducing an important function known as a weighting as
follows:

Definition 3.1 (Weightings [Lei08]). Let A be a finite category. A weight-
ing on A is a function £* : Ob(A) — Q : Va € A,

> (la, bk =1

where ((a,b) = |A(a,b)| and k* denotes the ‘weight’ of e € Ob(A).

We will also want to discuss what we mean by a coweighting but must
first introduce what is meant by a ‘dual” or ‘opposite’ category.

Definition 3.2 (Dual Categories [Leil4, p. 16]). Let A be a finite category.
We denote its opposite or dual category by writing A°°. Formally, Ob(A°P) =
Ob(A) and A°P(b,a) = A(a,b) VYa,b € Ob(A). Composition is the same in
A°P as in A but with the arguments reversed. Explicitly, if

a—25b 25 ¢
are maps in A°P then

a+f_pef ¢

. . . fo . .
are maps in A; these give rise to a map @ +—— ¢ in A, and the composite
of the original pair of maps is the corresponding map a — ¢ in A°P.

Returning to weightings, we exchange the superscript @ with a subscript
one and work over a dual category in order to define a coweighting as follows:

Definition 3.3 (Coweighting). A coweighting k, on A is a weighting (Defi-
nition 3.1) on A°P,

16

Lemma 3.4. A has Mébius inversion <= A has a unique weighting <=
A has a unique coweighting; they are given by:

k= Zﬂ(a’a b>7 ky = Zﬂ(a7 b)

Proof. A unique weighting, or coweighting, implies there exists some invert-
ible function for all @ € Ob(A) which is exactly that which we have defined
to be Mobius function for a finite category. Then, by definition, the Mobius
function inverts the zeta function and hence by taking k* =), u(a,b) and
ky =", p(a,b), we satisfy the equations), ((a,b)k* =1 and), ((a,b)k, =
1 defining weighting and coweighting respectively. O]

We now present additional theory to build on what has already been
established and justify its introduction in Lemma 3.7.

Definition 3.5 (Equivalence). Let A, B be two categories with a functor F
(Definition 2.17) between them. We say they are ‘equivalent categories’ if
and only if both:

1. F is ‘fully-faithful’, i.e.
F:Aa,d") = A(Fa, Fa')
is an isomorphism.

2. F is ‘essentially surjective’, that is, each b € B is isomorphic (Defini-
tion 2.7) to some Fla.

Example(s) 3.6. Consider the following categories, A and B, with functor
F between them:

A a > B
La Fa=b Lo
a b
! f
g
O
1y

By this construction we observe an equivalence relation on objects of B in
which b ~ 0 <= 0,0/ = Fa for a € A. As a has only arrows to itself and b,
we observe F' is fully faithful as A(a,a) = {1,} = {1, = F1,} = B(Fa, Fa).
Then by construction, F' is essentially surjective as b’ = b = Fla and we have
shown there is an equivalence between A and B as a result.

17

Lemma 3.7. Let A and B be equivalent finite categories (Definition 3.5)
Then A admits a weighting <= B does.

Proof. Choose an equivalence: A I B . Let[® be a weighting on B.
Then we define the weighting for some a € A as follows

Cr
ko = _alFa
(em),
with C, = #{d’ € Ob(A) : a = '} and similarly for b € B : C), = #{b' €
Ob(B) : b = ¥'}, denoting the number of objects in the isomorphism class of
a and b respectively.
Proceed by manipulating a possible weighting on A (Definition 3.1). Let

a' € A. Then ((a,da’) and k% depend only on the isomorphism class of a’
(Cy) as defined. So,

> (la,d)k = ((Fa,Fd')k" (7)

a’ €A a’€A

=Y " ¢(Fa,Fa) (%LZF> (8)
a’ €A a

= Y ((Fa,b) g”/ 1t (9)
b:b=Fa’ a

=> ((Fa,b)l’ (10)
beB

= 1. (11)

We take the initial sum that defines a weighting on an object ' € A. By
definition, as F' is an equivalence, we use that it is fully faithful so that
((a,a") = ((Fa, Fd') in line (7). In the proceeding line (8) we can then easily
substitute our above definition for k. Given that F is an equivalence, F
must also be essentially surjective, and so we can replace F'a’ by bin line (9) as
long as we begin to act over the isomorphism classes of b. However, as a’ = a”
in A < Fd = Fd’" €B and C, = Cp, = #{b € Ob(B) : b = Fa} we note
that Cpy = (% and thus simplify the fraction. In addition, we consider our
summation to be over exactly those same b € B as is presented in line (10).
Then we have found that Y., ¢(a, @)k” = 3,5 ((Fa, b)l’.

Therefore we have established that between equivalent categories, k® is a
weighting on A provided [® is a weighting on B, as required. O]

We will now present a number of categories and compute their weightings.

18

Example(s) 3.8. Here are a few examples constructed from familiar cate-
gories.

1. Let D, be the finite discrete category of n objects such that ((a,a’) =
d(a,a’) by definition. Then D,, has unique weighting as follows

1= Cla,b)k" => 5(a,b)k" = k"

Therefore each k* = 1 Ve € Ob(ID,,), hence) ., k* = |Ob(A)| = n.

2. Let G be a finite group, with G the corresponding category with unique
object . Then G has unique weighting

1= ¢(a,b)k" = ((a,a)k" = |G - k*
b

as ((a,a) = |G| by definition, we then have |G|k* = 1 and hence

k= ﬁ (as expected, see page 5).

3. Let us take the category, A, of the n = 2 poset from Example 2.3-(2).
We define its weighting to be 1 = 3, ((a,b)k" for objects a,b € A.
Computing explicitly, we write:

a=0:k"+ Oy g2y 12 _ g
a={1}: K4 L2 —q
a={2}: g2 R

0=11,2): die

Alternatively, we may express it in matrix form as M = ({(a,b))qpea,
ie.

O OO =
O O = =
O = O =
— s

and compute the weighting of each @ € Ob(A) by taking M * ((k*) x
(1)) = (1) where (1) denotes a column vector of appropriate dimension
(here it would be 4) that has all elements equal to 1. Then this forms

a matrix system that can be easily solved. Consequently, we find that
K = kY 4+ k2 =0 and K12 = 1.

19

4. Categories with terminal objects have weighting 6(—,1). Hence the
above example would have terminal object {1,2} and so k? = k{1 +
k12t = 0 and k{2 = 1, as before.

5. Let A be the poset of non-empty subsets of {1,...,n} with reverse
order, i.e. for n = 2

{1,2}

YN

{1} {2}

We define the weighting to be k7 = (—1)/I=! as

ZCIJ = > K

0£JCI

— Z k-1

0£JCI
1]

-3 (M) e
(- (@) ()
)

() () (e

=1-(1-1 _

The formulation of a category as a matrix with entries counting arrows be-

tween objects is particularly useful in automating the computation of weight-
ings and coweightings (see Appendix A.1).

3.2 Euler Characteristics

We lift the following Lemma (with subsequent proof) and Definition directly
from [Lei08].

Lemma 3.9. Let A be a finite category with weightings and coweightings k*
and ko respectively. Then Y k=" k.

20

Proof.

Definition 3.10 (Euler Characteristic). A finite category A has Euler char-
acteristic if it admits both a weighting and coweighting. Its Euler character-

istic is then
=> k=) "k e€Q

for any weighting £* and coweighting k,.

Example(s) 3.11. Working from the categories present in Examples 3.8, we
can now remark on their Euler characteristics.

1. Let D, be the finite discrete category of n objects. Then x(D,) = n.

2. Let G be a finite group of size |G| with G the corresponding finite

category with unique object o. Then x(G) = ‘—1|

3. Let A be the category of the frequently called upon n = 2 poset. Then
X(A) =1.

4. Let A be a category with an initial or terminal object. As the dual of
a terminal is the initial, we note that the weighting of a terminal is the
same as the coweighting of an initial. Hence y(A) = 1.

The process of computing Euler characteristics using the sums of weight-
ings and coweightings is automated in Appendix A.2.

Remark 3.12. We note
X(A) = x(AP)
when either side is defined.

While this is sufficient for us to compute and understand what an Euler
characteristic of a category is, it would be a shame to stop there. As before,
we look to existing category theory to seek out how deeply a property holds.

We continue the search much as we have before, though not explicitly
called out; in searching for similar categories. We eluded to the strongest type
of similarity (an isomorphism of categories) when we first spoke of skeletal
categories (Definition 2.8), considering categories to be essentially isomorphic
when there were no ‘redundant isomorphisms’. This was rather practical for
our use case that rather quickly set the precedent that we can chip away

21

at some of the differences present between two like-categories and still find
useful results out of what remains. Moving further, we defined this weaker
condition of similarity more generally as an equivalence of categories (in fact,
that of ‘weak’ equivalence in Definition 3.5). In doing so, we preserved a lot of
the underlying structure between each category, really only losing the precise
number of isomorphic copies that each object has, which turned out to not
be terribly important when it came to our given use case.

Finally, we come to speak on adjunctions, which are looser forms of sim-
ilarity yet again, and to quote [Lan78, p.vii] ‘adjoint functors arise every-
where’. Fortunately for us then, we can extend this theory of Euler charac-
teristics to adjunctions!

The following definition is offered to provide a sense of what an adjunction
is and to illustrate its notation.

Definition 3.13 (Adjunction). Let A and B be finite categories. An adjunc-
tion is a pair of functors (Definition 2.17) F, G:

A B

such that there is a natural (Definition 3.14) isomorphism, i.e.
B(Fa,b) = A(a,Gb) Va € A,beB.

We say F' is the ‘left-adjoint’ and G the ‘right-adjoint’ respectively; often
writing /' 4 G (with the tail directed to the left adjoint) to denote such an
adjunction.

This definition in particular requires that we call on the use of the term
‘naturally’; which we define below.

Definition 3.14 (Naturality). Let A and B be finite categories with cor-
responding functors F' and G between them respectively. Given an arrow
¢ : a — d then the isomorphism B(Fa,b) = A(a,Gb) is natural if the
diagram

B(Fa,b) «— A(a, Gb)

0—0oF ¢ O—bop

B(Fa',b) +—— A(d', Gb)

22

commutes for all : a — d/, as in:

o P

GoF¢

and similarly for arrows constructed from b — ¥'.

Adjunctions can be defined technically in other ways, for example, by
making use of units, 7, and co-units, €, though we use the above formulation
as it speaks most closely to the language presented already. Interested readers
may seek any of the following references as good guides to uncover such
alternate technical definitions. See [Lan78|, [Sim11] or [Leil4].

Example(s) 3.15. Several examples of adjunctions follow.

1. (Equivalence) An equivalence (Definition 3.5) is an adjunction. Sup-
pose f : A — B is an equivalence. Then given b € B choose Gb € A
such that FGb = b (which can always be done as F' is essentially sur-
jective).

2. (Posets) Let us take X,Y to be two finite sets with map f between
them. We define 2% to be the ‘power set’ of X, that is, the set of all
subsets of X. Then a map f : X — Y induces an adjunction between
the power sets

f

oX T oY
—
where
f(A) ={f(z) |z € A}
for A € 2% and
f(B)={r € X | f(z) € B}

for B € 2, so that f(A) C B <= A C f %B). Clearly then
2% (f(A), B) has one element

<~ f(A)CB

< AcC f4B)

<= 2" (A, f7'(B)) has one element.

Given that 2% is a poset by inclusion, we can consider the ordered
posets as described in Example 2.3-(2) to be appropriate targets for
such an adjunction to exist.

23

3.

(Open Topology) Let X and Y be finite topological spaces and f :
X — Y be a continuous and open map. So that f(U) is open for all
open U C X and similarly, f~!(V) is open for all open V C Y.

f
~—

Open(X) 1 Open(Y)
Y~
f71

where Open(X) C 2% is a sub-poset of open sets of X. This is enough
to say that we have an adjunction as f(U) CV <= U C f~1(V) for
all subsets of each space.

. (Closed Topology) Let X and Y be finite topological spaces with a

continuous map f : X — Y between them. Then we have an adjunction

i
7
Close(X) L1 Close(Y)

Y.~
f—l

where Close(X) C 2% is a sub-poset of closed sets. Here we define

f(A) = f(A) for closed subsets A C X. Then we have

Ac f74(B) < f(A)cCB

as B is a closed subset of Y. Any increasing map f : X — Y between
finite preorders induces an adjunction as above.

Proposition 3.16. Let A and B be finite categories.

a.

If there is an adjunction A Z—— B and both A and B have Euler
characteristics that are defined, then x(A) = x(B).

If A ~ B then A has Fuler characteristic <= B does, and in that
case x(A) = x(B).

Proof.

24

a. Suppose there exists an adjunction F' 4 G between A and B. Then
((a,Gb) = ((Fa,b)VYa € A and b € B. We have, much like in the proof

of Lemma 3.7,

X(A) = ke

acA
=> <Z ((Fa, b)k:b) kq
ach \beB
= <Z kil (Fa, b)) K=> (Z kol (a, Gb)) kP
beB \a€A beB \a€cA
— Z kb
beB
= x(B).
Hence, if we know A and B to have Euler characteristics, they must be

equal.

b. Recall that any equivalence is an adjunction. To see this suppose F' :
A — B is an equivalence. For each b € B we choose an a € A such
that b =2 Fa. When b = Fa we choose Gb = a. Set Gb = a so that
Gp € A(Gb,GV) is the unique arrow such that F'GS is composite,

namely:
bl
g

b ers
T FGB
FGb

This defines our functor G : B — A. Hence A(a,Gb) = B(Fa,b).
Then A has x <= B does by Lemma 3.7. Hence if A has y then

X(A) = X(B) by part (a). =

Example(s) 3.17. Computing the Euler characteristic via adjunctions (Ex-
amples 3.15).

1. X(QX) = 1 for any finite set X and as we have initial or terminal
objects.

2. Both x(Open(X)) = 1 and x(Close(X)) = 1 as we have initial and
terminal objects.

25

3. (Spherical poset) Let us take a poset 2% for X = {1,2,3} and take
out its initial and terminal objects. Then we construct the diagram of
2%\ {0, X} in line with the spherical moniker as follows:

/ {12} = {2} \
() (2.3)

K (13} {3}

Then we can compute its Euler Characteristic to be x (2% \ {0, X}) =
0. More generally y can be computed based on the parity of the set

cardinality:
0 if | X]| odd
2 if | X even.

X(2X \ {®7X}) = {

Similarly, the spherical poset for X = {1, 2} is just the discrete category
of 2 objects, hence as in Example 3.11-(1) it has x = 2.

4. (Groupoid) Let P be a finite groupoid (i.e. all arrows are isomor-
phisms), of the form:

0
e D 2
- p=¢p
971

Then we write A ~ Zf P;, splitting the groupoid into the connected-
components of automorphism groups. In this example we have:

P= o jwzsfl

and Py = G (just the finite group category). So that x(PP)
xEP) =1+ - In general we have A ~ > Piand x(A)

X(A)1 =
2 B

26

4 Colimits

Definition 4.1. Let A be a finite category and X a functor as in X : A —

Set. Thus Xa is a finite set and for ¢ € A(a,b) we have a map X¢ :

Xa — Xb. The colimit, denoted lim X, is the set such that there exists a
—

map Xa — lim X,Va € Ob(A) compatible with all Xy and such that the
—

following diagram naturally commutes for all ¢ when S is any other set with
these properties.

Xa
X liinX
Xb 3

N

This last ‘universal” property uniquely determines S up to bijection.
Example(s) 4.2.

1. Let A be a category consisting of two distinct objects. Then lim X =
H
Xa + Xb; representing their disjoint union.
2. Let A be a category consisting of two objects and a single arrow between
them ¢ : a — b. Then lim X = Xb because the following diagram
H

commutes

Xa
Xo

27

3. Let us consider a ‘pushout’ diagram

cy Xb

for which X¢ and X are injections. Then lim X = Xb] Xc¢ is the
- Xa

union of Xb and Xc¢ with elements of the common subset X a identified.

4. Consider a finite group G with G the corresponding category of G con-
sisting of one object @ and G(e,8) = G. We have that the functor
X : G — Set is a G-action on the set X (o) because we have bijections
Xg: X(e) = X(e) for each g € G. This functor does not demand then
that group actions are free, i.e. Xg¢g can have fixed points. The repre-
sentable functor X = G(e, —) with X (e) = G(e,®) = G corresponds to
the free action G x G — G of G on itself. Free GG actions correspond to
familially representable functors X = nG(e, —) where n is the number
of orbits. In all cases liinX = X(e)/G is the quotient.

Proposition 4.3. Let A be a finite category and k* a weighting on A. If
X : A — Set is finite and familially representable (Definition 2.18) then
|lim X | =" k*|Xa|
—
Proof. We begin by showing |lim A(a, —)| =1 Va € A. Let o € lim A(a, —)
— —
be the image of id, € A(a,a) under the map A(a,a) — lim A(a, —). Then
%

given any arrow ¢ € A(a,b) we see ¢ also maps to e under A(a,b) —
lim A(a, —) as the following diagram:
—

A(a,b)

commutes. This shows that the image of ¢ in lim A(a, —) is also the image
%
of id, and so via the universal property we have lim A(a, —) = {1,}, a one
—

element set. Hence |lim A(a, —)| = 1.
—

28

Second note that for X = A(a, —) we likewise have
> RIXD =) KA(a,b)] =k (a,b) =1
b b b

by Definition 3.1 of weightings. Therefore the result is true for a representable
functor X = A(a, —). The result follows for familially representable functors
because both sides are additive. If X and Y are finite functors, then (X +
Y)a = Xa+ Ya (is the disjoint union of sets). So that

Im (X +Y)=1limX + limY
— — —

and |lim (X +Y)| = [lim X |+ |im Y.
— — —

Similarly, we can split the disjoint union by use of the weighting as follows:
S RUX + Y =) K Xb+ YDl
b b
= S R(IXD] + [YB)
b
= KIXb + > kY.
b b

Hence, any familially representable X : A — Set has |lim X| = Y, ¥°|Xb],
—

as expected. O
Example(s) 4.4.

1. Let A be the opposite of the poset of non-empty subsets of {1,...,n}.
So for n = 2, it is the category

{1,2}

// \\
{1} {2}

and so on. Let X be a finite set and Xy, ..., X,, subsets of X. Define
a functor X : A — Set (which is familially representable, though this
is not obvious) by X (I) = (,c; X; so that X ({k}) = X, etc. and take
the arrow I — J to the inclusion

X(I) =X c ()X, =X(J).

iel jed

29

Then lim X = (J_, X;. So by Proposition 4.3 and Example 3.8-(5), we
—

obtain

Uy Xi] = [lim X| = Y KX(D] =Y (=D nierXl.

IeA I
Which is just the Principle of Inclusion-Exclusion.

. A finite group G acts freely on a set S. Let G be the corresponding
category of G consisting of one object ® and G(e,0) = G. Let X : G —
Set be a functor X (e) = S (which is familially representable <=
action is free) and X (g) = ¢g : S — S the map defined by actions on G.
Then li_r)nX = S/G and, once more, by Proposition 4.3 we obtain

1

|5/G| = [lim X| =) k*[X(a)| = @l

a€eG

|51

30

W

(&)

12
13
14
15
16
17
18
19
20

21
22
23

24
25
26

27
28

29
30

31

32
33

A Maple Program

A.1 Computing the (co)weightings of a finite category

Weightings := proc(ExampleMatrix::Matrix, {coweight::boolean := false})
global free;
local ProcMatrix, RDim, OnesMatrix, RCT;
Check if user desires the coweight, if so, convert. Else continue with
input.
The check is done here so that we can precisely check the conditions which
fail (if any) for a weighting or coweighting separately.
if coweight then

ProcMatrix := transpose (ExampleMatrix);
else

ProcMatrix := ExampleMatrix;
end if;

We establish this as a variable as we call on it again if it passes the
next check.
RDim := RowDimension(ProcMatrix);
Check to see if the matrix has been input properly
if RDim <> ColumnDimension(ProcMatrix) then
error "You did not input an n x n matrix as expected.";
end if;
Knowing that the input matrix is (n x n), we can now construct a
corresponding (n x 1) matrix full of 1s
OnesMatrix := Matrix(RDim,1,1);
Check for rank difference to determine inconsistent solutions (=> no (co)
weighting)
by Rouche-Capelli Theorem; hence the RCT variable.
RCT := Rank(ProcMatrix) < Rank(<ProcMatrix|OnesMatrix>);
If we asked for the coweight and it happens that the rank is either equal
or greater
than the augmented then we have no solution.
if coweight and RCT then
error "The rank of the augmented matrix is greater than the
coefficient's rank, hence there is no coweighting.";
elif RCT then
error "The rank of the augmented matrix is greater than the
coefficient's rank, hence there is no weighting.";
end if;
If we passed through all of these checks, then our solutions are unique or
there are infinitely many.
So when returning the solutions, if there are infinitely many we ask the
free variable to be in x for legibility.
return Linearsolve (ProcMatrix, OnesMatrix, free='x');

end proc:

Listing 1: Weightings Procedure

A.1.1 Code Commentary

The Weightings procedure has one mandatory argument (an input matrix)
and an optional flag ‘coweight’ to indicate that you are interested in the
coweighting of a category. If this optional argument is given, we proceed
by transposing the matrix which gives us the coweight matrix without the

31

need to input that separately ourselves. Following this we build some local
variables based on the matrix we are proceeding with to assess whether it has
been constructed correctly and whether it will have solutions (determined by
the conditions of rank by the Rouché-Capelli theorem). If the correct condi-
tions are not met then we check in the final if loop whether we were working
on the weighting or coweighting matrix and exit the program with an error
code explaining why there was no solution. Otherwise, should the conditions
for a solution exist we can continue and return an output, accepting infinite
solutions with a free variable in x.

A.1.2 Example input/output

> ExampleFreeVar := Matrix([[1,1],[1,1]])

11
ExampleFreeVar := 11 (1)
> Weightings(ExampleFreeVar)
1—x 4
(2)
X1
B ExampleNoCW := Matrix([[1,1,2],[1,1,2], [1,2,1]])
11 2
ExampleNoCW:=| 1 1 2 (3)
1 21
> Weightings(ExampleNoCW)
1—3XL1
X1 (4)
X1

> Weightings(ExampleNoCW, coweight)

Error. (in Weightings) The rank of the augmented matrix is greater
Lthan the coefficient's rank, hence there is no coweighting.

> ExampleFracEC := Matrix([[21,1,2],[2,1,1],[1,2,1]])

11 2
ExampleFracEC:=| 2 1 1 (5)
1 21

[> Weightings(ExampleFracEC)

(6)

N N N

w
[\]

W N e

0 ~N o ;o

11
12
13

14
15
16

17
18
19
20
21
22
23
24

A.2 Computing x(A) of a finite category

EulerChar := proc(Examplematrix::Matrix);

global coweight, chi;

local W, CW;

We recall the weightings procedure output as a column vector, and take the
sum of its components.

try
(W := sum(Weightings (ExampleMatrix))
catch
"The rank of the augmented matrix is greater than the coefficient's
rank, hence there is no weighting.":
end try;
try
(CW := sum(Weightings (ExampleMatrix, coweight)))
catch

"The rank of the augmented matrix is greater than the coefficient's
rank, hence there is no coweighting.":
end try;
If their sum agrees then we say so and print the euler characteristic,
else we admit otherwise and print their weightings to display their
differences.
if (W=CW) then
print ("The weightings agree");
print (chi = W);
else
print ("The weightings disagree");
print (W, CW);
end if;
end proc:

:

Listing 2: Euler Characteristic Procedure

A.2.1 Code Commentary

The EulerChar procedure takes in a sole input matrix and feeds it to the
Weighting procedure defined above twice in order to check that there ex-
ists both weighting and coweighting. We use try and catch to allow the
procedure to continue despite the fact the Weighting procedure has failed
(which would otherwise also terminate this procedure at this step). If a set
of weightings or coweightings exists then it takes their sum. Later, if both
exist and are equal, we deduce that this is the Euler characteristic and so we
output that they agree and choose arbitrarily between them to output x = W.
If they are not equal, then we output their sums when they exist (as these are
what we attempted to store as W, CW) and claim that the weightings disagree.
In the case where, for example, a weighting exists but not a coweighting,
the procedure shall output what it calculated to be the sum of the weighting
and CW in a list; indicating that the latter had the incompatible system of
equations. This case can be seen in the next subsection for ExampleNoCW.
One could point out inefficiencies in the design of this procedure as it has
to call on weightings twice. Admittedly, it would seem exceptionally likely

33

that either procedure could be restructured to cut down on computation time,
though at present, with all examples tested the program does run acceptably
fast; and far faster than any manual computation could hope to achieve.

A.2.2 Example input/output

> EulerChar(ExampleFreeVar)
"The weightings agree."”

i x=1 (1)

> EulerChar(ExampleNoCW)
"The weightings disagree."

1-x ., CW (2)

[> EulerChar(ExampleFracEC)
"The weightings agree."”

_3
1= (3)

34

B Statement of Originality

This dissertation was written by me, in my own words, except for quotations
from published and unpublished sources which are clearly indicated and ac-
knowledged as such. I am conscious that the incorporation of material from
other works or a paraphrase of such material without acknowledgement will
be treated as plagiarism, according to the University Academic Integrity Pol-
icy. The source of any picture, map or other illustration is also indicated, as
is the source, published or unpublished, of any material not resulting from
my own research.

References

[Lan78] Saunders Mac Lane. Categories for the Working Mathematician.
Springer New York, 1978.

[Lei08] Tom Leinster. The Euler characteristic of a category. Doc. Math.,
13:21-49, 2008.

[Leild] Tom Leinster. Basic category theory, volume 143 of Cambridge Stud-
tes in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2014.

[nca] ncatlab. Orthogonal factorization system.

(accessed: 11/04/22).

[Sim11] Harold Simmons. An introduction to category theory. Cambridge
University Press, Cambridge, 2011.

35

https://ncatlab.org/nlab/show/orthogonal+factorization+system
https://ncatlab.org/nlab/show/orthogonal+factorization+system

	Introduction
	Categories and Möbius Inversions
	Categories
	Möbius inversion
	Finding Möbius Inversions
	Application of the Möbius function

	Weightings and Euler Characteristics
	Weightings
	Euler Characteristics

	Colimits
	Maple Program
	Computing the (co)weightings of a finite category
	Code Commentary
	Example input/output

	Computing chi(A) of a finite category
	Code Commentary
	Example input/output

	Statement of Originality

