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1 Introduction

In this dissertation we wish to reconstruct the background required to un-
derstand the construction of the ‘series Euler characteristic’ (from [BLOS])
in order to later compare it against the ‘regular Euler characteristic’ (from
[Lei08]). For both constructions we shall find sensible and grounded answers
that, interestingly, do not always agree'.

We begin by recounting simplicial complexes, initially with their geometric
construction and then after introduce the abstract analogue as well as how one
may transition between either construction in Section 2.1.1. Later we define
their Euler characteristic to be the alternating sum of p-simplices. This is a
construction many will be familiar with, perhaps first as ‘Euler’s Polyhedron
Formula’; whereby any convex polyhedron (tetrahedron, cube and so on) has
Euler characteristic y = v — e + f = 2, where the vertices, edges and faces
are simplices of order zero, one and two respectively. In addition, we prove
that the Euler characteristic is invariant under barycentric subdivision.

Following this, we show how any abstract simplicial complex can be
turned into as a poset of simplices and that naturally this poset then can be
given the same Euler characteristic via its non-degenerate nerve (which is
the barycentric subdivision of the underlying abstract simplicial complex).
In Leinster’s initial paper, [Lei08], the M&bius inversion of posets by Gian-
Carlo Rota [Rot64] is generalised for finite categories and both give rise to
a natural definition of Euler characteristic (which we consider the ‘regular’
Euler characteristic).

We then provide a brief recap of the regular Euler characteristic of finite
categories as covered in my preliminary dissertation using the ‘(co)weightings’
of each finite category A. Afterwards, we explore the necessary background for
the complete construction of the ‘series” Euler characteristic. Beginning first
with a recap of formal power series, then of delta sets (also known as ‘semi-
simplicial” sets) and then ultimately relating the nerve of a finite category to
its classifying space to equate their Euler characteristics. In our construction
of delta sets we show how they can easily represent geometric and abstract
simplicial complexes. In fact, the delta set is the corresponding ‘cell complex’
of finitely many non-degenerate n-simplices of each dimension n. Thinking
that a sensible definition of Euler characteristic may be “an alternating sum
of cell complexes”, one can then consider a formal power series of the form
f(t) = > _,50cat™ where ¢, denotes the number of cells in each dimension
(i.e. m-simplices and «,) and evaluated at ¢ = —1 to produce an agreeable
definition for geometric and simplicial complexes, namely ) - (—1)"a,. We

ISee Section 2.3.4



then reconsider the ‘matrix of morphisms’ that is, a matrix whose entries e;;
are the numbers of morphisms between the (arbitrarily) ordered objects i
and 7 of a given finite category. We go on to show that a category with non-
degenerate nerve corresponding to a delta set has a rational formal power series
that converges at t = —1 and in turn produce an appropriate definition of a
series Fuler characteristic by evaluating this formal power series fy at t = —1.
Following this, we compute the regular and series Euler characteristic for a
handful of finite categories. I then explore how the series Euler characteristic
behaves well with respect to the categorical sum in Proposition 2.46 and
how one can consider this as an arbitrary partitioning of the block sum of
different matrices that correspond to differing finite categories than one used
to initially construct the block. In doing so, we consider whether there is
any way to include additional morphisms between objects in categories that
preserves their series Euler characteristics. Unfortunately, this approach does
not seem to bear fruit in this regard and, as it stands, seems to show that
for a class of finite category (namely those that are block sums of smaller
finite categories with series Euler characteristic) that there are no possible
morphisms that can be added without altering series Euler characteristic.

Ultimately, we round up in Section 3 by introducing the Euler characteristic
of an orbifold as given to us by John Conway and Daniel Huson [CHO02] and
show that the series Euler characteristic is equally sufficient to demonstrate
that the 17 wallpaper groups have Euler characteristic zero. We first do
so by recounting the definition of the orbifold Euler characteristic as the
reduction of the Euler characteristic of a compact surface (typically a sphere)
that is adjoined with holes, handles, as well as corner and cone points
(known quaintly as ‘defects’) and considering the 17 wallpaper groups as
a problem of enumerating the possible defects. Then we demonstrate in
Section 3.1 that the series Euler characteristic of the matrix of morphism
corresponding to an orbifold with cone point agrees with existing definitions
for the Euler characteristic and that corner points follow trivially. We finish
off by providing a matrix of morphism for each of the seven surfaces with
integer Euler characteristic greater than or equal to 0.

In Appendix A there are a number of MAPLE programs that automate the
computation of both regular and series Euler characteristics for a given matrix
of morphisms, adjoined by sensible commentary where necessary. I reuse the
same stylings file created for my previous dissertation to input aesthetically
pleasing syntax-highlighted code into IXTEX as preexisting offerings were
lacklustre.

ACKNOWLEDGEMENTS I thank Jon Woolf very dearly for his infectious
enthusiasm and the tremendous guidance he provided on both of my



dissertations, as well as the impact he has had on my writings. [ am
additionally grateful to Tom Leinster for his original work that both of
my dissertations follow closely.

2 Related algebraic Euler Characteristic con-
structions

In this section we present the necessary background for later sections and
discuss the importance of results along the way. We wish to uncover a general
definition of Euler characteristic that is consistent across a large number of
structures. To do so, we first look to finite simplicial complexes, then later
exploit their relation to the nerves of posets and finite categories to uncover
each structure’s respective Euler characteristic.

2.1 Finite Simplicial Complexes

We begin by introducing simplicial complexes, both geometric and abstract
and discuss how we can translate between the two. Further theory and
additional background can be found in section three of [Gib10] which we use
extensively as reference material here.

We start by defining what a simplex is. Let us present the following
definitions with preferred notation for the geometric case first.

Definition 2.1 (Geometric Simplex). A geometric simplex, o € R” | is the
convex hull of n + 1 affinely independent vectors, vy ..., v, € RY. So that we
write each simplex o as the convex hull: o = {>"1" \v;: DN =1, > 0}.

Definition 2.2 (Face of a Geometric Simplex). A geometric face of o is
a simplex given by the convex hull of a non-empty subset of the vertices
{vo,...,vn}. If 7 € X (for some set X of simplices) is a face of o, then we
write 7 < o (or equally o > 7). Note that o < ¢ for any simplex o.

Definition 2.3 (Geometric Simplicial Complex). Let X C RY be a finite set
of geometric simplices in RY such that:

1. If o € X and 7 < o (7 is a geometric face of o) then 7 € X, and

2. o, 7€ X = oN7=0oroNtisaface of both o and 7, and hence
oNnteX by (1).

Then X is a (finite) geometric simplicial complex.



With this construction, it is not so hard to see 0, 1 and 2-simplices as
points, lines and triangles, or, put another way: vertices, edges, and faces.
Moreover, a 3-simplex is a tetrahedron and so on, though these become
increasingly harder to visualise.

In contrast, we may view simplices more abstractly as follows:

Definition 2.4 (Abstract Simplex, Face and Simplicial Complex). Let X
be the pair (V,S) for a set V whose elements are ‘vertices’ and S a set of
non-empty subsets of V. Elements o € S are the abstract simplices, and
for sets in S of size n 4+ 1 we consider those the abstract n-simplices. Each
o then has a face for each non-empty subset 7: 7 C 0 € S, with ¢ C ¢ Vo,
trivially. Provided we have the following:

l.veV = {v} €S and
2. ifoceSand ) # 7 Co (7is aface of o) then 7 € S,
then X = (V,S) is an abstract simplicial complex.

Remark 2.5. S is contained in the non-empty subsets of the powerset 2V

Consequently, we observe, much like the geometric case, that any pair
0,7 € S has either no intersection: o N7 = (), or that they meet at a common
face, (cNT Co)AN(ocNT CT).

2.1.1 Geometric to abstract and back

We spend this subsection justifying our abstraction of the geometric simplicial
complex by presenting methods to translate between the two below. From
here, we shall use the shorthand X, for an abstract simplicial complex.
Similarly, we refer to a geometric simplicial complex as Xg.

Geometric to abstract: We begin with our geometric simplicial complex
X¢ and construct an abstract simplicial complex Sx, = (V,.S) which we
shall refer to as Sx,. First we take V' to be the set of O-simplices in X¢
and each simplex ¢ is in Sx, <= the convex hull: (v: v € ¢) is in the
complex Xg. As before S is a subset of the non-empty subsets of V| i.e.
S c 2V, a powerset. Note that if o € Sy, then 1 Co0 = 7 € Sx,,
since faces of geometric simplices in X are geometric simplices in Xg.

So we conclude Sk, is an abstract simplicial complex

Abstract to geometric: Conversely, given a (finite) abstract simplicial com-
plex X, = (V,S) with S C 2", we can realise it as a geometric complex



in RVl where |V| denotes the cardinality of the set V. We do so by
ordering vertices in V' as vy, ..., vy and realising o € S as the convex
hull

lo| = (e;: v; € 0)

where each e; is the i-th standard coordinate vector with 1 in the i-th
column, and zeroes elsewhere. For example, let |[V| =3 and o = {1, 3}
so that |o| = (e1,e3). In general, S C 2V gives us a set of geometric
simplices in RY, with the property that both 7 C ¢ = |7| is a face
of |o| and |T| N |o| = |TNa].

Therefore we may conclude that | X4| = {|o|: 0 € S} is a geometric
simplicial complex.

Having discussed the relationship between geometric and abstract sim-
plicial complexes, we consider their isomorphisms. We begin by defining an
isomorphism between geometric simplicial complexes X¢ C R™ and Yo ¢ RY
as follows:

Definition 2.6 (Isomorphism (Geometric)). Let X, Yo be geometric sim-
plicial complexes of dimension M and N respectively. Then a linear map
L: Xq — Yg such that

1. for each simplex, o € X¢, L(0) is a simplex in Y of the same dimension,
and

2. each simplex 7 € Yj is of the form 7 = L(o) for a unique o € Xg.

is an isomorphism of geometric simplicial complexes. When there is
such an isomorphism we write Xg = Y.

Then for the abstract simplicial complex we have

Definition 2.7 (Isomorphism (Abstract)). Let X4 = (V,.S) and Y4 = (W, T)
with S C 2V and T C 2 be abstract simplicial complexes. If there exists
a bijection f: V — W such that 0 € S <= f(0) € T, then f is an iso-
morphism of abstract simplicial complexes. When there is such an
isomorphism we write X4 = Y.

Remark 2.8. Consider the linear map L: RV — RY, mapping e; — v; for each
v; € V. Then this induces an isomorphism of geometric simplicial complexes,
L: |S XG| = XG.

Remark 2.9. Consider the map of vertex sets f: V — {e;:i=1,...,|V]}
given by mapping v; to e;. Then this induces an isomorphism of abstract
simplicial complexes f: X4 = S)x,|.



2.1.2 Euler Characteristic

Having covered both geometric and abstract simplicial complexes we can now
look to define their Euler Characteristics. We begin first with the geometric
case and define it as in [Gib10, Definition 6.15].

Definition 2.10 (Euler Characteristic (Geometric Simplicial Complex)). Let
X¢ be a geometric simplicial complex of dimension n. Let a,(X¢g) denote
the number of p-simplices in Xg. Then

n

X(Xe) =) (~1)ay(Xe), (1)

p=0
is the Euler Characteristic of Xg.

We can write the formula in a different way. Let us translate the formula
for the geometric Euler characteristic, x(X¢), into a definition of x(X,4) for
an abstract simplicial complex X 4. Suppose we represent each simplex as o,
with the set of all simplices S. Then each p-simplex in X corresponds to a
p-simplex in X4 which has cardinality equal to p + 1 (Definition 2.4), so that
the number of p-simplices in X¢, that is, a,(X¢) is the sum:

a,(X) = Z L,

og€eS
lo|=p+1

and we can rewrite the above formula (1) above as follows:

Il Il
—
|
M =
~—
bS]
—~
|
—_
~—
Q
I =
—

p=0 o€eSs
|lo|=p+1
=3
ogeS

In doing so, we have defined a sensible formula for the Euler characteristic of
an abstract simplicial complex. Hence, we write

\]



Definition 2.11 (Euler Characteristic (Abstract Simplicial Complex)). Let
X4 = (V,S) be an abstract simplicial complex. Let |o| denote the cardinality
of the simplex o € S. Then

X(Xa) =) (=pl,

oc€eS

is the Euler Characteristic of X 4.

2.1.3 Barycentric Subdivision and invariance of Euler Character-
istic

Continuing our bias for presenting the geometric case first, we define the

‘barycentre’ for a geometric simplex as follows:

Definition 2.12 (Barycentre and Barycentric Subdivision (Geometric)). For
each simplex o0 = {v;: ¢ € I'} in a geometric simplicial complex, X, we define
its barycentre to be the point at its centroid, namely: 6 = ﬁ Y e Vi-

The (first) Barycentric Subdivision of the total simplicial complex X
is the set of points {6: 0 € X} as well as all simplices 7 with convex hull
T=1{(6;:1=0,...,q) where each 0;_1 < 0, for each i and each o; is a simplex
of Xq. The barycentric subdivision of X is a geometric simplicial complex,
as in Definition 2.3 and is denoted X'’; with subsequent subdivisions often
denoted with additional dashes.

Let us now consider what the barycentre of the first few k-simplices are
and what simplicial complex looks like after subdivision.

Trivially, the barycentre of each 0-simplex is at the same point, (v). A
1-simplex has barycentre at the midpoint of its line, %(Ui+vj>7 and a 2-simplex,
as a face, has barycentre at its centroid: %(vZ + v; + vg). In total, we can
consider the barycentric subdivision of some geometric complex in the plane
to do the following:

1. Replaces each existing 0-simplex with a O-simplex at the point itself,

2. Each 1-simplex obtains an additional 0-simplex at its midpoint and is
itself replaced by two 1-simplices joining both endpoints to the new
0-simplex, and

3. Each 2-simplex produces a 0-simplex at its centroid, with additional 1-
simplices joining all 0-simplices of the boundary to its centroid, forming
six new 2 simplices in total.



With this intuition built for geometric barycentric subdivision, we can
now consider the following for the abstract simplicial complex.

Definition 2.13 (Barycentre and Barycentric Subdivision (Abstract)). Let
X4 = (V,S) be an abstract simplicial complex, with V' the set of vertices and
S the non-empty subsets of the powerset 2" with each simplex o; € S. We
define the barycentric subdivision of an abstract simplicial complex
to be X’y = (V',5), where the set of vertices in the barycentric subdivision
are the previous subsets of 2, namely: V’ = S. The set S’ C 2V of simplices
of X’) consists of the subsets {0y, ...,0,} where

opC oy C---Cop withoyeSfori=0,...,p

is a non empty chain of simplices in X’;. Given this construction, it is easy
to see that X, is again an abstract simplicial complex as in Definition 2.4.

Example(s) 2.14. Let us look at a 2-simplex: {0,1,2}. Then we we have
one such chain {0} € {0,1} C {0, 1,2} which presents each point in the chain
as a face (Definition 2.4) of its smaller subset. Hence, we obtain a 0-simplex
for each element in the chain (corresponding to an initial corner of its face, the
midpoint from this corner to another and the point at its centroid respectively),
and a 1-simplex between each 0-simplex, with a final 2-simplex being produced
with each 0-simplex acting as its new corner. By considering all such chains
we obtain an equivalent representation to the geometric case.
The following is an illustrative diagram of the above example.

{2}
0

TR

Lemma 2.15.

1. If X 1s a geometric simplicial complex with associated abstract simpli-
cial complex Sx,, then X5 = |S_|.

9



2.

If X 4 is an abstract simplicial complex with associated geometric sim-
plicial complex S|x,|, then X = Six,.

Proof.

1. Suppose X is a geometric simplicial complex. Let Sx be the correspond-

ing abstract complex. Then the simplices in X’ and in S’ correspond
bijectively to chains oy C --- C o, of simplices in X. There is a map
X' — |S%]| taking a point > 7 ¢;6; in the convex hull (6;: i =0,...,p)
to the corresponding point Y > _, t;e,, where e, is the standard basis vec-
tor corresponding to the vertex o; of S%. This defines an isomorphism
X' = |S%| of geometric complexes.

Suppose X is an abstract simplicial complex. Let | X| be a corresponding
geometric realisation of X. Simplices in X’ and in |X|' correspond
bijectively to chains oy C --- C 0, of simplices in X. There is a map
X' — Sxp taking a vertex o of X' (where o is a simplex in X) to the

vertex |o| (i.e. the barycentre of the realisation |o| of o) and defined
on the interior of each simplex by linear extension. This defines an
isomorphism X' = S|x. of abstract complexes. ]

Having established barycentric subdivision is equivalent for geometric and
abstract simplicial complexes, we would now like to observe whether it has
any effect on Euler characteristic. We follow the outline of a proof present in
[Gib10, pp. 55| to guide the following proposition:

Proposition 2.16. The FEuler Characteristic of a 2d simplicial complex, X¢,
15 invariant under barycentric subdivision.

Proof. First, we note that a 2-dimensional simplicial complex X C R? has
Euler characteristic: x(X¢) = ap — ag + az. Writing o} to denote the count
of each i-simplex after barycentric subdivision of X, we justify the impact
for each:

1=0:

1=1:

af = ap + a1 + as. As each vertex replaces itself with one new vertex,
each edge produces an additional vertex at its barycentre and similarly
each face produces a vertex at its barycentre.

oy = 20y + 6ay. We find each existing edge is split into two new edges
and that the barycentre of each face creates six new edges per face as it
connects each existing vertex to its barycentre.

. ah = 6ay. Finally, as each face was divided by six new edges to the

centroid, we have produced six faces in place of each initial face.

10



Then we calculate the Euler characteristic of X’ and substitute as follows:

n

X(Xg) =) (~1)(a})

p=0
=a,— o) +
= (Oé() + o —+ 042) — (20&1 + 6062) + (60&2)

=y — Q1 + Qo

n

= D (1P(a(X)) = x(Xe)

p=0

Hence, we have demonstrated that the Euler characteristic is invariant under
barycentric subdivision for a geometric simplicial complex Xg. O]

Another argument for invariance can be made much more generally for
the abstract simplicial complex.

Proposition 2.17. If X is an n-simplex then the alternating sum X/, of the
number of simplices in X' with ‘top’ vertex at the barycentre of X is (—1)".

Proof. We write x/, inductively as

, (n+1 n+1\, n+1\ n+1\
(2)
where the term (") (—x}_;) counts simplices with the ‘second top’ vertex at

the barycentre of a face of X with the chosen ¢ vertices. For n = (0 we obtain
X6 = Xo = 1. Then considering the above formula, we have

=)+ (e
-(3)- ()

=1-2xq
— 1.

By further induction, we deduce x; = (—1)? for each ¢ from 1 to n — 1.
Therefore we can rewrite Equation (2) as such

W= () - (e = (e e

11



(note: (—1)""! = (=1)""!, so either choice is valid) and condensing all but
the first term under a summation, we obtain

= (1) kf;(—w'f“ (")

From here, we first shifting the index to & = 0, then use Pascal’s Rule
("Zl) = (") + ( " ), to unpack the summation and perform the following

Computatikon: o
Xn = (Z i 1) - kz:(—l)kH (n Z 1) (4)
— (Z i 1) - {(_1)0“ (ng 1)} _ zn:(_l)k—l—l (nz 1) 5)
—— ~~ L k=0

)
2y e () "

- 0 (prr=(-ne

=(1-1)"=0 as n>0

=(1-1)"=0 as n>0

= (=" (13)

12



Hence we have shown y/, = (—1)" for the top face as desired. O

Corollary 2.18. If X, = (V,S) is an abstract simplicial complex then
X(Xa) = x(X7).

Proof. We compute directly as follows

X(Xa) =) (-p-

oeS
= Z Z (=11 by Proposition 2.17
o= T€o’

(6 top vertex)

= > (-

TES’

= x(X%), where X'/, = (V' S"). O

In Section 2.1.1 we touched on isomorphisms between geometric and
abstract simplicial complexes. From the constructions, x(X¢) = x(Sx,) and
X(Xa) = x(|Xal), we have the following corollaries:

Corollary 2.19.

by Definition 2.11 by Definition 2.11
and Section 2.1.1 and Section 2.1.1
X(Xe) = x(Sxe) = x(9%,) = x(19%,1) = x(XG) . O
by Cort:lﬁzry 2.18 by Lerr?;za 2.15

Corollary 2.20. The Euler characteristic of a finite simplicial complex (both
geometric and abstract) is invariant under repeated barycentric subdivision. [

2.2 Finite Posets

A poset is a set equipped with a binary relation, <, that satisfies reflexivity,
anti-symmetry and transitivity ([DP02, Definition 1.2]). Provided the poset is
finite, then it has a well defined Euler characteristic given by the alternating
sum of chains, ¢,, of length n, as >~ - ,(—1)"c, € Z ([Lei08, Example 2.3c]).

We will now consider the poset’s classifying space (its nerve) to work out
an equivalent definition of its Euler characteristic.

2.2.1 Nerve of a Poset and Euler Characteristics

We construct a poset out of an abstract simplicial complex as follows:

13



Definition 2.21 (Poset (of X4)). Let X4 = (V,S) be an abstract simplicial
complex with vertices V' and S the non-empty subsets of V. Then the poset
of simplices, Py = S, is partially ordered by the face relation 7 C o0 < 71
is a face of ¢ for simplices o, 7 € S.

The nerve of a finite poset is then constructed by preserving the structure
of n-chains in the poset as n-simplices as follows:

Definition 2.22 (Non-degenerate nerve (Poset)). The non-degenerate
nerve, NP, of a finite poset P is an abstract simplicial complex whose
vertices are the elements of P and where {py,...,p,} is an n-simplex in NP
whenever

Po <p1 < - < Dn,

is a non-degenerate n-chain in P.

Example(s) 2.23. An example poset P on the left, with its non-degenerate
nerve N P on the right.

{1,2}

TN

{1} {2}

7

0

The nerve NP is a simplicial complex with four O-simplices, five 1-simplices
and two 2-simplices. Equated to the four 0-chains, five 1-chains and two
2-chains of P.

If P is a finite poset then Pyp is the poset of non-degenerate chains in
P, i.e., the elements are non-degenerate chains pg < --- < p,, and they are
partially ordered by the sub-chain relation. There is a map Pyp — P which
maps non-degenerate n-chains to their top element: py < -+ < p, — p, (this
is not an isomorphism in general).

If we suppose X is an abstract simplicial complex with corresponding
simplicial complex NPy as in Definition 2.22, then the n-simplices of NP x
are the non-degenerate n-chains oy < 01 < --- < 0, in Py, viz. they are the
non-degenerate chains of simplices in X, which are exactly the n-simplices in
the barycentric subdivision of X (Definition 2.13). Hence, NPx = X', and
there exists a homeomorphism | X| = |X'| = |[NPx].

14



Consequently, from any abstract simplicial complex X we can produce
a poset of simplices Px and realise its nerve as the barycentric subdivision
NPyx = X'. Likewise, for any geometric simplicial complex X we have:

INPsy| = [X].

We conclude

X(Px) = x(NPx) = x(X') = x(X).

Example(s) 2.24. For a finite simplicial complex X (geometric or abstract)
with a single 2-simplex face, we demonstrate the process X — Py — NPx.

AN
LI

15



2.3 Finite Categories

We introduce finite categories as follows:

Definition 2.25 (Finite Category). A finite category, A, consists of the
following;:

1. A finite collection of objects, Ob(A).

2. A finite collection of morphisms, A(a,b), for each a,b € Ob(A) that
satisfy a composition law: A(a,b) x A(b,c) — A(a,c), Va,b,c € Ob(A),
which is associative, namely, given 6: a — b, ¢: b — cand ¢¥: ¢ — d
we may compose to obtain 9 o (¢ o) = (1o p) o 6.

3. An identity morphism, 1, € A(a,a) such that 1,00 = 0,V0 € A(b,a)
and similarly 6 o 1, = 0,V0 € A(a,b).

For a finite category, one method of finding its Euler characteristic was
presented by Tom Leinster in [Lei08]. My preliminary dissertation, [Edw22],
acted as a more readily accessible paper; attempting to guide the reader
through this paper with little prior knowledge of categories. The remainder of
this subsection presents some material lifted from my preliminary dissertation,
with minor editing and comments inserted to catch the reader up when
necessary. Example 2.29 is new.

Leinster’s initial method involves ordering the objects of the category, A,
and taking a matrix M with elements e;; corresponding to the total count of
morphisms between the i-th and j-th object (this is |A(a,b)| = ((a,b)). We
shall refer to this matrix as the ‘matrix of morphisms’ for brevity here on out.
From this, we compute a sum of ‘weightings’ and ‘coweightings’, and provided
both sums agree, we take their sum to be the category’s Euler characteristic.

Definition 2.26 (Weightings). Let A be a finite category. A weighting on
A is a function k*: Ob(A) — @, such that Va € A,

Z C(av b)kb =1,
b

where ((a,b) = |A(a, b)| is the count of morphisms from a to b, and k* denotes
the ‘weight’ of each object @ € Ob(A). A coweighting (denoted k,) is just
the weighting on A°P (the category A with the direction of each morphism
reversed).

Lemma 2.27. Let A be a finite category with weightings and coweightings k*®
and ko respectively. Then Y k* =" k.

16



Proof.

; Z(Zkub)k” Zk (;C(a,b)kb>:;ka. 0

Definition 2.28 (Euler Characteristic (Finite Category)). A finite category,
A, has Euler characteristic if it admits both a weighting and coweighting.
Its Euler characteristic is then

Zk“ Zk = x(A) € Q,

for any weighting k£* and coweighting k,.

Example(s) 2.29. Let A be a ‘pushout’ consisting of objects a, b, ¢ with two
unique morphisms, ¢: a — b and ¥: a — ¢, as well as identity morphisms
A(e, ) for each e € {a, b, c}. We write its matrix of morphisms M of elements
€ij of A as

1 11 k® 1
010 Kl =11
0 01 k¢ 1

We find k¢ = —1, k* = 1 and k° = 1. Hence > ectape k° =1. One can check
ke

that the sum of coweightings is also Y, ks = 1 by verifying M T( : > = <1)

Hence x(A) = 1. . .

Having given the previous presentation of Euler characteristic, we spend
the rest of the section detailing the background theory to an alternate Euler
characteristic for finite categories which we refer to as the ‘Series Euler
Characteristic’ (later denoted by xs, Definition 2.40). Defined in Tom Leinster
and Clemens Berger’s paper [BLO08]. It makes use of formal power series,
delta sets and the nerves of categories and so we introduce each in sequence.
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2.3.1 Formal Power Series

We use [Car63] as a reference for the discussion of formal power series here.

Let K be a field. The formal polynomials in one variable ¢ with coefficients
from K behave well under addition and multiplication by scalars, and hence
make up a vector space over K with infinite basis. We refer to the set of all
such polynomials as K[t]. Each polynomial is a finite linear combination of
powers of ¢ with finitely many non-zero coefficients a € K, which we write as
ano ant".

Considering multiplication of polynomials, we let ¢” - t7 = 7% and define
multiplication in K[t] as the product

(Z aptp> . (Z bqtq> = Z cnt”, where ¢, = Z apby. (14)

p+q=n

For all polynomials P, @, R, S € K[t] and all scalars A we have:

(P+Q)-R=P-R+Q-R,
(AS) - R = \(SR),

so multiplication of polynomials is commutative and associative. Hence, K|t
forms a commutative algebra with a unit element (let ¢y = 1 and a,~9 = 0)

over the field K.
Now we look to formal power series.

Definition 2.30 (Formal Power Series). A formal power series over K is
an expression
ap+art+--- = Zant”, Va, € K,

n>0

for a free variable ¢t where we now no longer require finitely many non-zero
coefficients a,,.

Again, we form a vector space over K by defining the sum of two
formal power series as: (Y., 50 ant™) + (3,50 bnt™) = D50 Cal™ where
¢n = ap + by, and the product of a formal power series by a scalar is to
be: A(D 2,50 @nt"™) = >, 50(Aan)t". The product of two formal power series is
defined as in Equation (14) and we retain that the multiplication is commu-
tative, associative and bilinear with respect to the vector space formed above
over K. Thus, as before, we form an algebra with unit element over the field
K which we write as Kt].
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Remark 2.31 ([Car63, pp.10]). “The algebra K|[t] is identified with a subal-
gebra of K[t], the subalgebra of formal series whose coefficients are all zero
except for a finite number of them.”

In certain cases we are able to invert a formal power series (P is invertible in
K[t] < 3Q € K[t]: P(t) - Q(t) = 1, the unit element over K'). Consider
the following examples:

Example(s) 2.32. Let P(t) - Q(t) = 1 for polynomials P,Q € KJt].

L. Let P(t) = (1 —t) and Q(t) = >_,5,t". Then one can easily verify
P(t) - Q(t) = 1, hence the series 1 — ¢ has an inverse @) in K[t].

2. Let P(t) = )_,50ant" and Q(t) = >, 5obnt". Then by comparing
coefficients we have

1
aob():l — ao#o,b():—,

Qo
b
a0b1 + a1b0 =0 = b = —M,
ao
b b
aobg + a1b1 + agbo =0 = b2 = —%,
0

albi,l + agbifg + -+ Gibo

Y

aobi+---+a,~60:0 > bi:—
Qg

and so on. Hence P is inverted by @ provided ag # 0.

Lemma 2.33. The polynomial P(t) = -, a,t" € K[t] is invertible if and
only if ag # 0.

Proof. (See [Car63, pp.14]).

= If P is invertible, then there exists some polynomial Q(t) = >, -, but"
such that P(t) - Q(t) = 1 which implies apby = 1 by Equation (14) and
so ag # 0 by necessity. n

<= If aqy # 0 then we can multiply P by the scalar (ao)~! to obtain
(ag)"*P(t) = Py(t). If each coefficient a,, = 1 for n > 1 then P, has
inverse 1—t as before (Example 2.32-1). Else, there exists some alternate
polynomial U(t) with minimal coefficient b,, # 0 for n > 1 (has order
w(U) > 1) for whom we can define each coeflicient b; for i > 1 such that
b; = (a1b;_1+asb;_o+---+a;by). By taking the product (P(t))(1-U(t))
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we obtain each a;b; = 0Vi = 1,2, ... and agbg = 1 in the same fashion
as Example 2.32-2. Hence the polynomial () =1 — U(t) inverts P,
and P is invertible by Q(t) = ao(1 — U(?)). O

We now look to define when such polynomials are considered ‘rational’.

Definition 2.34 (Rational Formal Power Series). A formal power series,
R(t) = )50 ant" € K[t] is rational, if it has the form

P(t) 1
R = — = P [
=00 " 0w
for polynomials P, Q) € K[t] where Q(t) is invertible.

Then, as Leinster writes in [BLO8, pp.44]; for any field K, there is a
commutative diagram

K[t] — K[t]

[ [

K(t) —— K(1)

with K[t] the ring of polynomials over K, and Kt] the ring of formal power
series as above. We have then K (t) and K ((t)) to be their respective field of
fractions. That is, the field K(¢) of rational expressions over K and the field
K ((t)) of rational formal power series (these are the formal Laurent series over
K, i.e. finite expressions ) _, a,t" with finitely many non-zero coefficients
a, for n <0).

We will now justify why the field of fractions of K[t] is the formal Laurent
series over K. First, each Laurent series, L(t), can be written as the quotient
of power series,

for which we may write up-to a relabelling of indices, ¢ = k + n, that
L(t) = (")~ - ZqZO ag—nl?.

In the other direction, if the quotient of formal power series % € K((t)
then as Q(t) # 0 we write Q(¢) =", axt’ for some n > 0 where ag # 0.

Moreover, Y, axt® is invertible in K[t] because ay # 0 (Lemma 2.33).
Then we have another polynomial, (3", , aktk)_l = R(t). Hence,

Pty  P(t) _ PMORE)

QD) Pyttt

which is a formal Laurent series as above.
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2.3.2 Delta Sets

In this section we make use of ‘Delta sets” which are generalisations of abstract
simplicial complexes in which we allow faces of simplices to be identified. I
thank §11 of [Ran92| for its lucid exposition of Delta sets which aided in the
writing of this section.

Definition 2.35 (Delta Sets). A A-set, X, is a collection of sets {X,, },,>0
together with face maps

9o
Xn — anla
On
such that:
(9@ = 8j7181', for i < 7, (15)

for which we write 0;x to mean the ith face of some z € X,,.
We now look at two examples of A-sets.
Example(s) 2.36.

1. X, is the set of n-simplices in a geometric simplicial complex Xq. To
define the maps ¢,: X,, — X,,_1 we have to order the vertices in Xg.
Then if 0 = (v, ..., v,) € X,, where vy < -+ < v, in the ordering we
write:

0;0 = (Vo + o, Vi1, Vis1s- -, Un) € Xp1.

2. X, is the set of n-simplices in an abstract simplicial complex X4 =
(V,S). To define the maps 9;: X,, — X,,_1 we order the vertices in V.
Then if o = {vg, ..., v,} € X, where vy < -+ < v, in the ordering we
write:

0i0 = {0, -+, Vi—1, Vit1y -, U} € Xy,

In both cases, we label the vertices of each n-simplex x € X,,, and then
define faces 0;x to be the face opposite the vertex i, i.e. the face whose

vertices are labelled 0,1,...,7— 1,i+ 1,...n (or for a geometric complex,
these are the points labelled vy, ..., v;_1,vi11,...,v, as in Example 2.36-(1)
above).

Remark 2.37. In these examples, 0;x # 0;x when i # j. So A-sets are more
general than either geometric or abstract simplicial complexes.
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For a basic 2-simplex o we have the following:

2

oo Ooo

Os »]

oo

where we take X, X1, Xy to be the sets of 0,1,2-simplices respectively and
label the vertices 0, 1, 2, anticlockwise, with 0;z as faces opposite. If we write
the 2-simplex as the set [012] and apply J; to it (implying we are finding
the face opposite to the top labelled vertex) we can compute: 02[012] = [01],
which is the opposite edge from the 0 to 1 labelled vertices as expected.
Applying a second face map, say, 9y, we would see 0;05[012] = 9,[01] = [0]
(and similarly by relation (15) of Definition 2.35 we find 0,0, = 0,0, and
computing for ourselves we see 0,0,[012] = 0,[02] = [0], as expected).

Delta sets are also known as ‘semi-simplicial’ sets [nL.a22a]. Here, as in
the Examples 2.36, we can construct examples as sets derived from simplicial
complexes and see them as sets of (n + 1)-tuples corresponding to the n-
simplices. Another valid definition of the Delta set arises categorically as the
presheaf of a specific wide subcategory of the ‘simplex category’ (which in
total is denoted by boldface A) [nLa22b]. The simplex category contains more
information than we need, in fact, considering a presheaf, X : A° — Set,
will give us a ‘simplicial set’ (as opposed to semi-simplicial), which contains
additional ‘degeneracy’ maps; which identify those (n + 1)-simplices which
are degenerate in that they contain repeated vertices. As we do not need this
additional structure, we cut it out by defining the desired wide subcategory
to be the ‘Semi-simplex’ category, denoting it as A, where the subscript, +,
depicts our sole interest in the injective maps.

Definition 2.38 (Semi-simplex Categories). Let A, be the Semi-simplex
category whose objects are the finitely ordered sets [n] = {0,1,...,n}
and whose morphisms are increasing injections generated by basic maps
d': [n — 1] — [n] such that for each m € [n — 1] we have:

o' (m) m m < 1,
m) =
m4+1 m>1,

such that 9?97 = 919" when i < j.
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Remark 2.39. In the (semi)-simplex category we take: 9'07 = 3*19% in
order to keep the map: 0;,0; = 0,.10;, as shown in Definition 2.35 in the
(semi)-simplicial set consistent after taking its dual.

Now, should we consider the presheaf X : A — Set we obtain a categor-
ical definition of a semi-simplicial set (equally that of a Delta set, { X, }n>0,
where the sets X,, = X ([n])), which can be shown to agree with our earlier
definition (See Definitions 2.6 and 2.10 of [Fri08] for such a clear illustration).

2.3.3 Nerves of Finite Categories and Leinster’s Theorem of Series
Euler Characteristic

Earlier we discussed the non-degenerate nerve of a finite poset (Definition 2.22)
as being a type of abstract simplicial complex, here we shall introduce the
(non-degenerate) nerve of a finite category as being a (semi) simplicial set.
The purpose of this is to, yet again, consider a way in which we can represent
a given structure as a type of ‘cell complex’, which has well understood Euler
characteristics (for example, Definition 2.11).

Given a cell complex, we could consider the ‘number of cells, ¢,, of dimen-
sion n’ to have some corresponding formal power series f(t) = > ., cnt". As
is the case for a geometric simplicial complex, X, suppose the number of
cells are the number of n-simplices, «,,, then we consider the evaluation of the
formal power series f(t) at the point t = —1 to be fx,(—1) =, ~(—1)"a,.
Hence, as in Definition 2.10, this formal power series at ¢t = —1 is the Euler
characteristic of the complex X¢. This is ideal for a finite simplicial complex,
as there are only ever finitely many terms and so the sum always converges
(in Z).

Clearly, we have some interest in finding when the formal power series
f(t) =>",50 Cal™ exists at t = —1 or at least when it has analytic continuation
to that point. Whenever there are finitely many cells, we have that the formal
power series is a polynomial and clearly then exists at t = —1. If we continue
by considering the Delta set, X, with finite sets, X,,, for all n, then we will
define fa(t) =, <o | Xn|t". Once more, we note that a finite category, A, has
a non-degenerate nerve consisting of finitely many non-degenerate simplices
of each dimension (in fact, corresponding to a delta set). We define the power
series fa = fna.

Let us open by capturing this as a definition, we shall call the Euler
characteristic brought about by the formal power series the ‘Series Euler
Characteristic’, denoted xy and define it as follows:

Definition 2.40 (Series Euler Characteristic). A finite category A has series
Euler Characteristic if fy(—1) € Q. In that case, its series Euler
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Characteristic is xyn(A) = fa(—1).

The remainder of the section is spent justifying this definition and pro-
ducing a more explicit formula for f4(¢). Now we look to define the (semi-
simplicial) nerve of a category.

Definition 2.41 (Nerve of a Category). The semi-simplicial nerve of a
category is a semi-simplicial set in which an n-simplex is a chain

2% ®2 Pn
Zo s T s Lz,

of morphisms in A for each z € X,,; such an n-simplex is degenerate if and
only if some ¢; is an identity. [BLOS, pp.45]

The boundary 0;(¢1,...,¢n) == (©1,---,Vit1 © @i, ---,¢n). (Note that
this may be degenerate even when (¢, ..., ¢,) is not, so we cannot restrict
to a semi-simplicial set only containing non-degenerate simplices.)

We justify the relation of Euler characteristic between the nerve of a
category and the category itself as follows:

Proposition 2.42. Let A be a finite and skeletal category containing no
endomorphisms except identities. Then x(A) = x(BA) = x(NA).

Proof. Here, BA is the classifying space of the category A. The classifying
space is a geometric realisation of the nerve. When A is finite, skeletal and
all endomorphisms are identities, there are only finitely many non-degenerate
simplices in NA, so BA = |NA| is a finite simplicial complex and x(BA) is
well defined. Hence, by our earlier relations of Euler characteristic between

complexes, we write x(NA) = x(|NA|) = x(BA).
Then the series Euler characteristic xx(A) = xs(NA) = xs(BA) because
BA = |NA|. Moreover, by Proposition 2.11 of [Lei08] we know x(BA) = x(A).
O

The delta set is the corresponding cell complex of finitely many non-
degenerate n-simplices of each dimension n with formal power series corre-
sponding to the nerve of the finite category, hence:

falt) = faa(t) =Y _cat™ € K[t].

n>0

We now take a detour to discuss some relevant facts about matrices. Let
n € N and let K be a commutative ring with M € Mat,,(K) an n x n matrix
with elements M;; € K for all ¢,j from 1 to n. We write s: Mat,(K) - K
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for the K-linear map defined by s(M) = >, ; M;; (hence s takes the sum
over all elements in the matrix). Then all matrices M € Mat,, (K ) have an
adjugate, adj(M) € Mat,,(K) defined by:

adj(M) = ((—1)“‘7 - det(Dy;))

1<ij<n’

where D;; is the (n — 1) x (n — 1) matrix of M produced by removing the jth
row and ith column. Consequently, the adjugate matrix satisfies the following
equation:

M -adj(M) = adj(M) - M = det(M) - I, (16)

for an n x n identity matrix I,,.

Lemma 2.43. Let M € Mat,(K) be a square matriz over a field K. Then
the sum Y . s(M™)t" € K[t] is rational (Definition 2.3/).

We thank Tom Leinster for this proof as [BLO8, Proof of Lemma 2.1]:

Proof. Waite F(t) = 2, . M"t" € Mat,(K[t]). Then (I, — Mt)F(#) = I,
so det(I, — Mt) - F(t) = adj(I, — Mt).
Applying the K-linear map s: Mat,, (K [t]) — K[t], we obtain

det(1, — Mt) - s(F(t)) = s(adj(I, — Mt)).
But s(F(t)) = > ,cn s(M™)t" and det(l,, — Mt) is not the zero polynomial

(since its value at t = 0 is 1), so ) . s(M™)t" is rational and equal to
s(adj(l, — Mt))
det(1,, — Mt)

€ K(t). O

Returning from this matrix detour, we now propose Leinster’s primary
theorem:

Theorem 2.44. For any finite category A, the formal power series fy is
rational (over Q).

Proof. As before (with (co)weightings, Definition 2.26), we order the objects
of A and take a matrix of morphisms, M containing elements e;; € K (in
fact, in Z by construction) the total count of morphisms between the i-th and
j-th objects (JA(a,b)| € Z). If we remove the identity morphisms, we obtain
a matrix (M — I) with (M — I);; many morphisms from e; to e;. By the
chain relation of Definition 2.41 (non-degenerate n-simplices form chains of
non-identity morphisms in A) we conclude that the number of non-degenerate
n-simplices between e; and e; is therefore ((M — I)");;. Hence the total
number, ¢,, of non-degenerate n-simplices is their sum, s((M — I)"). By
Leinster’s result in Lemma 2.43 we have demonstrated f, is rational. ]
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As stated at the beginning of this subsection, a formal power series,
fa(t) =250 at™ € Q[t], does not converge in general, we need additional
criteria. Since by the above, fa(t) = >, <, cat” € Q[], it makes sense to define
X=(A) = fa(—=1) € Q provided after simplifying the RHS of equation (17) the
denominator does not vanish at ¢t = —1. We consider that a category with
non-degenerate nerve corresponding to a Delta set will converge at t = —1
as required. By combining the proofs above, we may write f, as follows:
Consider the matrix of morphisms of A, then we write

~ s(adj(f, — (M — I,)t)
Jal) = det(L, — (M — I)t)

(17)
provided fa(—1) € Q, and we define fy(—1) = x=(A) by Definition 2.40.

2.3.4 Comparing Euler Characteristics and Series Euler Charac-
teristics

Let us consider a number of examples of finite categories for which we can
attempt to compute a sensible (series) Euler characteristic.

One can consider the finite group, G, to be a finite category containing
one object and |G|-many automorphisms, where |G| is the order of the group.
Moreover, one can consider its classifying space, BG, to be a simplicial set,
wherein non-degenerate n-simplices are n-tuples of non-identity elements
of G. Hence we consider its nerve to have |G| — 1 many non-degenerate
n-simplices. Consider then its Euler characteristic as the alternating sum of
n-simplices we find: x(G) =3 ,(—1)"(|G| — 1) = |G|™", by evaluating it
as the sum for a geometric series. Likewise, when we look to compute its
series Euler characteristic we write fg(t) = > o ct” = (1 — (|G| = 1))~ 1,
and evaluating at t = —1 we find: -

1

xs(G) = fo(=1) = G

so that both definitions, in fact, agree.
We shall now explore a handful of example categories now.
Example(s) 2.45.

1. Let A; be a 3-object category with corresponding matrix of morphisms
and series Euler characteristic:

6 6 6 1
MAl =6 6 6 ; XZ(Al) = ?7
6 12 9
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However, if we compute its regular Euler characteristic we find x(A;) =
%. So they both exist but happen to disagree.

. Let Ay be a 4-object category without a weighting as in [Lei08, Ex-
ample 1.11(d)]. Then it has corresponding matrix and series Euler
characteristic:

My, =

2

) XZ(AQ) = 17

O = NN
S = NN
O ==
— =N

with no regular x(As) as the weighting and coweightings do not agree.

. Now consider the categorical sum (coproduct) of these two categories:

A; @ A, (this can be considered as their disjoint sum). Where its matrix

of morphisms: My, ga, = [M(‘)“ Mi } is a block matrix. Computing its
2

series Euler characteristic we obtain:

8
xu(A; & Ay) = -

Again, with no such regular Euler characteristic.

. One can (quite easily) uncover examples where both the series and
regular Euler characteristic exist and agree. Let A3 be a 2-object
category with generic elements such that both a,d > 1 then we can
compute their series and regular Euler characteristics:

T R VR E E

Provided ad # be.

. For the above category, A3, let a = d = 2 and set ¢ = 1 and b = 4,
so that ad = be. Then clearly we have found a category that has no
regular nor series Euler characteristic (nor does it have any weighting
or coweighting).

Proposition 2.46. The series Euler characteristic behaves well with respect
to the categorical sum (coproduct) of finite categories. For finite categories,
Ay and Ay with series Euler characteristic xs(A1) and xs(As) respectively,
we find:

Xs(A1 @ Ag) = xz(Ar) + xs(A2),

provided both corresponding matrices of morphisms are invertible.
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Proof. Separately, if both categories have invertible matrix of morphisms then
we note that their series Euler character exists trivially as fa,(—1) = xs(4;)
exists. Write M,, for the matrix of morphisms of each category A; and write
n; to represent the total number of objects in a given finite category, i.e.
n; = |Ob(A;)].

Consider the block matrix My, ga, = |:MA1 0

0 MA2:| for the n; x n; square

matrices corresponding to each A; (where n; need not be equal to ns). As
such, this block matrix represents the matrix of morphisms of the sum of two
finite categories A; and As.

If each matrix of morphisms, My, is invertible, then the inverse of their
block sum, M &11@ A, 18 the block sum of their inverses, M, ! namely:

Mgb 0
it =[5 3]
Consider that the adjugate matrix satisfies the equation (16) and that we can

decompose the determinant of this block matrix, My, qa,, as det(My,oa,) =
det(My, ) - det(My, ), we write its adjugate as follows:

adJ (MAl@A2) = ngll@Ag ’ det(MAl@A2> ' In1+n2
 [det(My,) - det(My,) - M 0
- 0 det(My,) - det(My,) - M,

B [det(MAz) -adj(My,) 0 }
- 0 det(My,) - adj(Ma,)|

Should we apply the K-linear map, s: s(M) =}, . M;j, to the above we find:
S(adj(MA1€9A2) = det(MA2) : S(adj(MAl)) + det(MA1) ’ S(adj(MA2))7

(one may easily verify that this map is distributive across a block matrix).

By rearranging our definition of adjoint such that M~ = madj(M ), then

taking its K-linear map, s, once more we write:
_ dj(My,0a,))
M 1 — S(a 1DA2
S( Al@AQ) det(MAﬁBAz) ’

_ det(My,) - s(adj(My, ) + det(My, ) - s(adj(Ma,))

det(MAl) . det(MAQ)
_ s(adj(My,)) | s(adj(Ma,))
det(MAl) det(MA2>

Therefore, by an earlier result (Equation 17): write fa,ea,(—1) = xs(A1 & Ay)
and ys(A; ® Az) = x=(A;) + x=(Asg), as desired. O
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Corollary 2.47. The categorical sum of finitely many finite categories with
wnvertible matrix of morphisms has series Fuler characteristic equal to the

sum of each individual finite category: xs (B;e; Ai) = Y ier X5 (Ay).
Proof. Consider a repeated application of Proposition 2.46. n

We shall now attempt to answer the question: is it possible to find addi-
tional morphisms that connect the two disjoint categories without impacting
their combined series Euler characteristic in general?

One notes that such a block matrix would have additional conformable

blocks B and C in M = [MCM ]\Z , ]; which contains these additional mor-

phisms between the categories. If My, and My, are invertible then

-l — {(MAM — BM,!C)™! 0 ] _ { I —BM,]

0 (My, —CM'B)7t| | -CM, ! I

when all blocks are defined. If both BM A_zl and CM &11 are zero matrices then
the block matrix is inverted as before. However, M}, is invertible, therefore
we may write, BM&; = 0 if and only if BMA_;MA2 = 0My,; so that B =0
and similarly for C' = 0. Therefore we cannot add any additional morphisms
between categories in general (though one might find specific cases where
additional morphisms coincidentally have no impact, of course).

What if we instead manufacture a matrix that does not change the series
Euler characteristic but allows B and C' to contain morphisms? Let us
consider an alternative partitioning of the block matrix. Let n be the count
of objects in A and m the count of objects in B. Then provided both have
invertible matrices of morphisms, we write the categorical sum A & B as
the block matrix of the following invertible matrices of morphisms where

ai; = |A(i,7)] and b;; = [B(i, j)|:

11 Qir2 -+ Qip 51,1 51,2 ce bl,m

Q21 Q22 -+ Qa2p b2,1 b2,2 s b2,m
My=1 . . |, M= . . .

Qp1 Ap2 - Qnpp bm,l bm,2 bm,m

Then the block matrix Mygp has series Euler characteristic xx(A & B) so
long as M, and My are invertible. Realise then that the block matrix is
‘partitioned’ by its initial construction. Once constructed, however, it makes
no difference as to how we choose to split up the four conforming blocks
(provided nothing changes).

By our initial construction we consider the block ‘partitioned’ by the n xn
and m x m blocks, joined across the diagonal, with zero blocks B and C

29



conforming to the remaining space. Now, let us instead partition the block
matrix into sub-blocks of size (n+z) x (n+x) and (mFx) x (mFx) for some
x € N less than both m and n. Provided that these new diagonal blocks are
still invertible, then their combined series Euler characteristic is the same (as
the total block matrix is equivalent). We differentiate an invertible sub-matrix
of the matrix of morphisms of a finite category by the use of a dash:

[Mui 07 [Mui B
Map = {o*MB] - {o*m}'

For example, consider a positive shift of x = 1 where both matrix of morphisms
My and Mp are again invertible. Then one might view the shifted partition
as follows:

ap1- - Gig i O------ 0 al,lz“'al,n O i . 0
Qn1 %W 0 0 B %71 ar'm 0 3 ) 0
0.0 *’T’g{l,’l”ifg}l’ﬂ; T 00 bug e bu
0-nnn 0 1 bt - by 0 n-- 0 byt b

Then (for a positive x) we view all conforming B as (n + z) X (m — z)
matrices that contain (n) x (m — x) zero sub-matrices with z-many additional
rows adjoined at the bottom containing the elements from the top = rows of
Mp. Similarly, all C' matrices are (m — x) x (n + z) matrices that contain
(m — x) X (n) zero sub-matrices with z-many additional columns adjoined to
the right containing elements from the leftmost = columns of Mp. Likewise, a
negative shift of x = 1 would instead give us blocks B and C' containing zero
sub-matrices with additional rows and columns containing elements from the
final rows and columns of Mj.

One could contextualise this partition in two ways. Of course, quietly
nothing has changed, we can still consider the block matrix to represent
two categories A and B with no morphism between them. Alternatively, we
can consider the new partition into invertible categories, A’ and B’ as a
relabelling of the elements, and we now have a block matrix containing two
different categories with morphisms contained in B and C' connecting them
which has the same series Euler characteristic as the initial block matrix.
However, this is not as exciting as one might hope. In the above case where
we shifted positively by 1, the re-imagining requires that we isolate an object
from B and place it alongside the objects of A and then it has morphisms
that solely join it to objects in B anyway. If we are to remove any of those
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morphisms (perhaps by taking B and C' as zero matrices again) then the
series Euler characteristic of the block will remain the same if and only if the
newly partitioned matrices coincidentally have the same block sum, which is
not guaranteed. Though this is no counter example to the earlier claim of B
and C being totally empty, we have at least found a method with which to
consistently write blocks with non-zero B and C such that the series Euler
characteristic does not change.

These results seem sufficient to suggest that the inclusion of additional
morphisms between objects from disjoint categories will, in general, alter their
combined series Euler characteristic, and (for the time being) any such case
otherwise is subject to chance. Further work may illustrate a connection or
pattern between the types of categories that share series Euler characteristic
but differ only in these additional morphisms. One might approach this from
either direction. Though, in the same manner we explored, it may be easier
to say something about the classes of matrices that exhibit this property than
it is to find a satisfying collection of categories (provided they do not already
neatly exist outside of the writer’s knowledge!).

3 Wallpapers and Orbifolds

John Conway showed in [CHO2] that the 17 wallpaper (or plane crystallo-
graphic) groups (and more) can be enumerated by considering the topology
of orbifolds. This was a sensible (in retrospect) but unique approach, a
more traditional approach to the enumeration can be found in chapter 26
of [Arm88| (with necessary background presented in previous chapters). We
spend this section outlining this approach with some examples and then verify
that the series Euler characteristic of a category defined from a triangulation
of the orbifold is consistent with this work.

The wallpaper groups, W are discrete group of isometries of the Eu-
clidean plane containing two independent translations, t1,?,. The subgroup
generated by these translations is necessarily normal, so that R?/W =
(R?/{t1,t2)) /| (W/{t1,t2)), where G = (W/(t;,t2)) is now a finite group acting
on the torus, T? = R?/(ty, t5). Conway’s method relies on a ‘defect’ formula,
which takes advantage of the Euler characteristic of the underlying manifold
and reducing it (to the Euler characteristic of the orbifold) by considering
the properties induced by the orbits of the wallpaper groups. We shall now
show that the series Euler characteristic work agrees with these results.

In Conway’s notation we write o to depict a handle, x to depict a crosscap
(for non-orientable surfaces) and * to depict a hole. The numbers before and
after a hole are the cone and corner points respectively. For example: 4 % 2 is
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the orbifold of the disk with order 4 cone and order 2 corner points and * X
depicts a Mobius strip.
Conway’s Defect formula [CH02, pp.252] is as follows:

Definition 3.1 (Defect Formula). Let X be a compact surface with finite
group G acting on X. Then @) is the orbifold quotient and we compute the
Orbifold Euler Characteristic as follows:
X X cone and corner
X(Q) = ﬁ =x(X/G) - Zdefects( d )
=2 Z defects®V.

Conway points out that one can always begin with a sphere and (hence
X(X/G) = 2) and then one can consider adjoining features to the sphere by
the orbifolds as ‘defects’ too. Though it is equally valid to start with an already
‘defected’” sphere and consider solely the possible cone and corner points that
remain. Given an orbifold of the form o---0 AB---xab---xaf -+ X -+ X,
we now note the contribution of its defect for each feature as:

°© defect = 2,
*, X defect =1,
cone points: AB ... defect = ”7_17
corner point: ab... defect = ”2—;1

These defects come from the points of X with isotropy groups.

As the interest is to investigate the wallpaper groups, we take our compact
X to be the torus, T?, so that x(X) = 0. Moreover, as x(X/G) > 0 there
are only a handful of possible surfaces we can consider. With aid of the
Classification Theorem (see [GX13, pp.96, Theorem 6.3]) we deduce that
there are seven such eligible surfaces. Table 1 organises the seven surfaces by
their Euler Characteristic.

X(X/G) =2 X(X/G) =1 X(X/G) =0
Sphere. Disk, Torus,
Real Projective Plane. | Mdbius Strip,
Klein Bottle,
Annulus.

Table 1: Table of unique surfaces with positive Euler characteristic.

Therefore, when we wish to find all orbifold quotients @ with x(Q) =0
we can look to solve for all possible x(X/G) = defects.
We explore one explicit calculation of the defect formula below.
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Example(s) 3.2. The orbifold of the disk 4 * 2 has defect as follows

4—1 2—1

=2 (—— 1 =) =o.
wo=2- () Lo+ (55)
=~ contribution "

order 4 order 2
cone point corner point

Which shows that this orbifold arises from a wallpaper group as ) defects =
2. Equally, for an orbifold of the disk, we could have also viewed it as
x(Disk) = 1 = defects for just the cone and corner point defects.

3.1 Teardrop Orbifold

Before exploring other examples, let us consider the teardrop orbifold, that
is the quotient space of a 2-sphere with one cone point adjoined of order
n. We thank Ieke Moerdijk for Section 3.1 of [MP99] and dedicate our own
Section 3.1 to containing the quotient and triangulation of the teardrop
orbifold as in Figure 1.

Quotient space: Triangulation:

0(%)

Figure 1: The quotient space of the teardrop orbifold with a triangulation.
[MP99, Fig. 2]

Here, we depict the triangulation of the teardrop to consist of the simplices
o(a), o(b), o(d) and o(e) as those on the front, and simplices o(c) and o(f) are
those on the back. Then each face is a union: (i) N --- N (i) = o(io...in),
and we have t = o(abde), u = o(beef), v = o(acdf) and w = o(abc).

As Leinster writes in [Lei08, pp.36], we can use the finite triangulation
of a compact orbifold to obtain a poset structure. We let P be the poset of
simplices (Definition 2.21) of the triangulation of an orbifold @ with P°P its
dual. From P°P we consider the functor G: P°® — FinGp that takes each
simplex, o, in P°? to the group of order 1 whenever the simplex does not
correspond to a cone point and takes each simplex corresponding to a cone
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point to a cyclic group of the same order. That is:
G: P®® — FinGp

1 o is not a cone point,
0- . .
C, o is a cone point of order n.

Then we consider the corresponding category E(G) to have objects the same
as P°P (that is, simplices) with morphisms pairs (o, g) for 0 > 7 € P and
g € G(1).

Consider then, for the morphisms ¢ — 7 in P°P corresponding to 7 < ¢ in
P (that is, 7 is a face of o) we will have exactly |I.| morphisms from o — T
in E(G) where I, are the isotropy groups of the simplex 7.

We now have our recipe to write the corresponding matrix of morphisms
of the category of elements, E(G), as follows:

1 11000|110]|n
I3 jo0o1110[01 1|n
10001110 1|n

1 10[0

0110

1010

Mg ) = 0 I6 n
I3 |n

n

0

0

0 0 Ly 0

00 0|n

Then we find that both its regular and series Euler characteristics agree and
are: xx (M]E(G)) = X(ME(G)) = %, as one would expect.

Remark 3.3. Each cone point of order n corresponds to an isotropy group
C, of order n. It can likewise be shown that each corner point of order n
possesses isotropy group Cb, of order 2n.

3.2 Wallpaper Orbifolds

The remainder of this paper presents the full table of all orbifolds with
wallpaper groups and then presents seven matrices of morphisms corresponding
to wallpaper groups, one for each of the seven surfaces in Table 1.
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17 Orbifolds
%632 632
x442 4 %2 442
*x333 3% 3 333
%2222 2%x2 22x 2222
K% *X XX 22X o

Table 2: Recreation of Table II from [CHO02, pp.254]; amended to include the
missing 22x orbifold of RP?2.

We now present seven examples. One for each type of possible surface
and orbifold to admit an appropriate wallpaper group. They each have
a corresponding matrix of morphisms of the category of elements arising
from the triangulation of their respective orbifolds. We verify that each has
regular and series Euler characteristics of zero which agrees with Conway’s
defect formula and the general topology of each orbifold. The remaining 10
wallpaper groups are formed in much the same way, in fact, they are just
alternate examples of the sphere and disk orbifolds, and, as such, are no more
instructive than the seven presented. Hence, they remain as an exercise of
understanding for the reader!

Example(s) 3.4.
1. The Torus, o.

1 1 011
I3]0 1 1]11
1 0 11 1
11 X(Ms) =0,
M, = ,
0| I3 |00 xn(M,) =
11
0 0 |
2. The Real Projective Plane: 22x.
1 1 011
215 01 1[1 1
1 X(Mas) =0
M — 1 1 22X - I
22 O ]3 1 1 ’ XZ(MQQX):0~
0 0 |1y

35



3. The Klein Bottle: x x.

4 400040
4 0 0 4 4|4 4

0044004

0 440444

41,

M><>< -

4. The Mobius strip: *X.

=0,
=0.

XE(M*X)
X (M)

A —

11 12
11 1}2

I,

0 0j0 0 01

M*X -

5. The Annulus: *x*.

Y

0 2 2|2

2 2 012
1 0 01

0 2 0|1

00 11

215

0

0 00 0 01

M** -
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6. The sphere with four cone points of order 2: 2222.

1 110002 2 220
] 001 11O0(0 2 2 2
4 1 0001120 2 2
01 01012 2 0 2
2 2 00
02 20
00 2 2 Xx(Mazz2) = 0,
Mogge = O ]6 20 2 0| X((]\/[2222)):O'
2 0 0 2
0 2 0 2
0 0 214

7. The disk with 3 corner points: *333.

M, 333 =

6 6 0]6

613 |6 0 66
06 6|6

2

0 2]32
2
000[00O0]|1
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A Maple Programs

These procedures have been confirmed to run on MAPLE 2021.2. They
require the use of the LinearAlgebra and MTM packages for some of their
built in functions and can be ran within the same worksheet and on the
same matrices without conflict (in fact, it may prove useful to check both the
Euler Characteristic and Series Euler Characteristic separately, as they do
not always agree; see subsection 2.3.4). One should take care in introducing
additional packages; certain functions are often given generic names that are
reused by packages and this may break functionality (for example, the add
function is often reused by name in other algebra packages).

The comparison of y and xyx could be easily automated by combining
these programs into another procedure that prints their differences, if any; or
whether they totally agree. The code for the ‘regular’ Fuler characteristic
(Appendix A.1 and A.2) was produced (with minor fixes presented here)
for my previous dissertation [Edw22] whilst the code for the series Euler
characteristic (Appendix A.3) is new. As the primary focus of this paper is
the new material, the previous code is presented mostly as-is, with comments
and examples left for the reader to explore themselves or find as necessary in
my previous dissertation. The new code receives fuller treatment.

A.1 Computing the (co)weightings of finite categories

Weightings := proc(ExampleMatrix::Matrix, {coweight::boolean := false})
global free;
local ProcMatrix, RDim, OnesMatrix, RCT;

if coweight then

ProcMatrix := transpose (ExampleMatrix);
else

ProcMatrix := ExampleMatrix;
end if;
RDim := RowDimension(ProcMatrix);

if RDim <> ColumnDimension(ProcMatrix) then
error "You did not input an n x n matrix as expected.";

end if;
OnesMatrix := Matrix(RDim,1,1);
RCT := Rank(ProcMatrix) < Rank(<ProcMatrix|OnesMatrix>);

if coweight and RCT then
error "The rank of the augmented matrix is greater than the

coefficient's rank, hence there is no coweighting.";
elif RCT then
error "The rank of the augmented matrix is greater than the
coefficient's rank, hence there is no weighting.";
end if;
return LinearSolve (ProcMatrix, OnesMatrix, free='x');
end proc:

Listing 1: Weightings Procedure
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A.2 Computing the Euler Characteristic of a finite

category
EulerChar := proc(Examplematrix::Matrix);

global coweight, chij;
local W, CW;

try
(W := simplify(sum(Weightings (ExampleMatrix)))
catch
"The rank of the augmented matrix is greater than the coefficient's
rank, hence there is no weighting.":
end try;
try
(CW := simplify(sum(Weightings (ExampleMatrix, coweight))))
catch
"The rank of the augmented matrix is greater than the coefficient's
rank, hence there is no coweighting.":
end try;

if (W=CW) then
print ("The weightings agree");
print (chi = W);
else
print ("The weightings disagree");
print (W, CW);
end if;
end proc:

Listing 2: Euler Characteristic Procedure

A.2.1 Code Commentary

When testing the matrix, (!} 2), a small error was found with the output.

The procedure would claim the weightings disagreed, as they were (1 — "7_1)
and (=1 %), weighting and coweighting respectively. These are, of course,

the same for any possible input (m > 0). The inclusion of simplify (lines 5
and 10) has mended this erroneous disagreement by turning both terms into
a single fraction where Maple admits they agree, as is expected.

A.3 Computing the Series Euler Characteristic of a
finite category

SeriesEuler:= proc(inputMatrix::Matrix)
global chi, Sigma, t;
local id, innerMat, detMat, sumAdj, polyEuler;

id := IdentityMatrix(Dimension(inputMatrix));

innerMat := id - (inputMatrix - id) * t;

detMat := Determinant (innerMat) ;

sumAdj := add(Adjoint(innerMat));

return(chi[Sigma] = simplify(sumAdj / detMat))
end proc:

Listing 3: Series Euler Characteristic Procedure
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A.3.1 Code Commentary

The code is rather straight forward. Here we allow the user to produce a ma-
trix for input, aptly named the ‘inputMatrix” which is fed into the SeriesEuler
procedure. This matrix comes from the finite category, with elements corre-
sponding to the number of morphisms between each object. Then we simply
compute its corresponding formal power series as outlined by the formula 17.
This enables us to find the Series Euler characteristic later by running the
following command: eval(SeriesEuler (inputMatrix), t=-1) on a given
matrix with name inputMatrix. One might wish to also wrap this with a
simplify too, in order to reduce repeated terms. Another strong recommen-
dation is the use of eval(singular (SeriesEuler (inputMatrix)), t=-1).
We find by inclusion of the singular function, we obtain a set of values where
the Series Euler characteristic breaks down for matrices containing generic

elements. For example, testing on the matrix (é 7 Z) the above command
nn

returns: {—1 = —1,n = 1} and {—1 = —1,n = 0}, indicating that both
n = 0 and n = 1 create matrices for which there is either: no series Euler
characteristic, or one which may not agree with the general case (here, n =0
gives us no xy nor x, and n = 1 gives us no y but xs = 3/2; which exists but
is certainly not of the form 1/n for possible values of n). If one is interested in
these examples, they should be checked by a manual substitution or by simply

defining n := x for a value of interest x € N and variable n. The redundant
—1 = —1 claim is a byproduct of taking ¢t = —1 and then substituting in
t = —1. It is possible for certain matrices to generate nonsense outputs that

look something like: {—1 = 1}, which suggests that there exists a singularity
of n provided ¢t # —1 but ¢ = 1/2 instead; as such, we can safely ignore any
such n = N prompt that come alongside this type of false output.

The simplify function is used when returning the polynomial fraction as
we wish to cancel out any shared terms in the numerator and denominator
so as to not cause trouble when evaluating certain polynomials (likely those
with (¢t + 1) roots).

As we discussed in the beginning of this appendix, one should expect to
run the traditional Euler characteristic program also, so I have not included
any conditions for catching mistaken inputs with the error command as
before (Appendix A.1), as one is likely to run into issues with that procedure
first. In addition, any such errors are unlikely to be useful anyway. It seems
that a sensible operator might only encounter an error by first introducing
a faulty input, perhaps by incorrectly sizing a matrix or by attempting to
introduce a matrix with zero determinant, which by a condition of Lemma, 2.43
is not a correct formulation of any such input matrix in the first place.
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This procedure is much simpler than the code for the ‘regular’ Euler
characteristic, though their computational complexity has not been considered.
Thus far, any matrix tested has ran near instantaneously on relatively modest
hardware, so this has not yet been a point of concern. If a notable example of
a finite category containing a large number of objects exists then the author
would be keen to test the program on it themselves!

B Statement of Originality

This dissertation was written by me, in my own words, except for quotations
from published and unpublished sources which are clearly indicated and
acknowledged as such. I am conscious that the incorporation of material
from other works or a paraphrase of such material without acknowledgement
will be treated as plagiarism, according to the University Academic Integrity
Policy. The source of any picture, map or other illustration is also indicated,
as is the source, published or unpublished, of any material not resulting from
my own research.
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