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Isometries

Euclid

The Euclidean Plane

To start, we introduce the Euclidean plane, E2. This is a plane in
which we unsurprisingly establish the Euclidean distance.

Definition

For a map f : R→ R2 we have that ∀x , y ,∈ R2:

d(f (x), f (y)) = d(x , y)

So any mapping f ‘preserves distance’ in the plane.
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Isometries in E2

Then we wish to consider perhaps a group that captures these
mappings in the plane. For that we will look to isometries of the
plane in order to manipulate points on the plane whilst respecting
distance.

How can we do this? What options do we have?

1 Translations

2 Reflections

3 Rotations

4 Gliding Reflections
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Isometries

Euclid

Affine Transformations

Thankfully, we have a way of figuring out whether these ideas will
work.

We introduce, as spoiled by the slide’s title, affine transformations.
Namely:

Definition

Those of the form such that for x , y , a, b ∈ R:(
x
y

)
7→ M ·

(
x
y

)
+

(
a
b

)
Where M is an orthogonal matrix (M ·MT = I2)



Wallpaper Groups from Scratch

Isometries

Euclid

Affine Transformations

Thankfully, we have a way of figuring out whether these ideas will
work.
We introduce, as spoiled by the slide’s title, affine transformations.
Namely:

Definition

Those of the form such that for x , y , a, b ∈ R:(
x
y

)
7→ M ·

(
x
y

)
+

(
a
b

)
Where M is an orthogonal matrix (M ·MT = I2)



Wallpaper Groups from Scratch

Isometries

Euclid

Affine Transformations

Thankfully, we have a way of figuring out whether these ideas will
work.
We introduce, as spoiled by the slide’s title, affine transformations.
Namely:

Definition

Those of the form such that for x , y , a, b ∈ R:(
x
y

)
7→ M ·

(
x
y

)
+

(
a
b

)
Where M is an orthogonal matrix

(M ·MT = I2)



Wallpaper Groups from Scratch

Isometries

Euclid

Affine Transformations

Thankfully, we have a way of figuring out whether these ideas will
work.
We introduce, as spoiled by the slide’s title, affine transformations.
Namely:

Definition

Those of the form such that for x , y , a, b ∈ R:(
x
y

)
7→ M ·

(
x
y

)
+

(
a
b

)
Where M is an orthogonal matrix (M ·MT = I2)



Wallpaper Groups from Scratch

Isometries

Types of Isometries

Translations

For brevity, this is the shortest example and just the mappings will
be shown (

x
y

)
7→ Mtr ·

(
x
y

)
+

(
a
b

)
=

(
1 0
0 1

)(
x
y

)
+

(
a
b

)
=

(
x + a
y + b

)

Where our Mtr =

(
1 0
0 1

)
evidently, this works and to nobody’s

surprise also an element within the orthogonal group.
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Reflections

For this instance, we will show off a simple diagram.

α
α

Figure: Visualising the reflection through an angle α of our black triangle.
The grey line additionally represents the reflected x-axis.
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Rotations

Similarly, a diagram for rotations is equally acceptable.

1

1

α

Figure: Illustrating the rotation of a unit vector (in green) by an angle α
into the blue vector.

Clearly once again, nothing about distances has seemingly been
harmed.
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Gliding Reflections

We present one diagram here to visualise how you may produce a
gliding reflection.

1

1 αP

Figure: Illustrating the rotation of a unit vector (in green) by an angle α
into the blue vector.

This option has us first translate our vector through the dotted line
and then rotate it α degrees about the point P.
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Is that all?

Oh mighty astute reader of frame titles.

That is all. But where is the identity isometry? You cry out.
It was already there! We could have taken a very boring translation
where a = b = 0 or even a rotation by 0 degrees. These isometries
in fact make up every possible isometry of the Euclidean plane.
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What is it?

What is a wallpaper group?

As inspired by it’s namesake, we may regrettably choose to look to
the poorly decorated walls of the 70s.

Figure: Oh no.
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Wallpapers

What is it?

What is a wallpaper group? No, seriously.

We can define the wallpaper groups to encompass the
symmetry-respecting 2-dimensional repeating patterns of the
Euclidean plane, given some leeway.
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What is it?

What is a wallpaper group? Formally, please.

We define a discrete subgroup of isometries of the Euclidean plane
with two linearly independent translations and we consider the
chosen wallpaper group to be all such groups which are the same
upto affine transformations of the plane.
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Wallpapers

What is it?

On being Discrete

As though it were planned, we’ve just discussed these isometries.

But we must go back to pick up on the word ‘discrete’ and what
we meant by it here. We are concerned with it in the topological
sense. That’s to say that for each point P in the plane, there exists
a finite neighbourhood of P such that some nearby points Q in the
orbit of P happen to intersect at finitely many points.
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Wallpapers

Why do we care?

Why those properties?

As eluded to at the start of this
section. The naming is no
mistake. Suppose we had a
(slightly nicer looking) pattern on
part of someones wall.

Figure: Not bad.

Well what if they liked the
pattern and wanted it across the
rest of their wall? We clearly
want some way to extend the
pattern.
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Wallpapers

Why do we care?

How they were useful

Continue this indefinitely, and
you see why it’s quite nice that
we have that there are two
linearly independent translations
so that we can use to span a
plane infinitely.

Then the discreteness property
addresses a problem of scale of
patterns. It doesn’t really make
sense to have an infinitely small
pattern in the plane or have a
pattern on an infinitely small
wall...

So we’ve then handled both extreme cases.
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The Torus

Euler’s here too?

The Torus

Jumping into a bit of topology; we have that a torus can be made
out of a Euclidean space by taking opposing edges of the plane and
aligning them.

Figure: Match opposing arrows and join them together to form a torus.
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The Torus

Euler’s here too?

Euler Characteristics

We will skip a few steps and begin with considering the Euler
(sometimes Euler-Poincaré) characteristic of the sphere.

χ = 2

Then we make use of the fact that we can define for
closed-orientable surfaces, their Euler characteristic are of the form

χ = 2− 2g

where g denotes the ‘genus’ or - more intuitively - the number of
punctures or holes in the surface.
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The Torus

Euler’s here too?

Euler Characteristics

Clearly then. A torus has Euler characteristic

χ = 2− 2(1) = 0.
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The Torus

Taking Mappings to the Torus

Other Properties of Tori

We will next introduce two propositions without proof that allow
us to take a quotient mapping of G/Λ acting on the torus TΛ.

 

(“divides out” lattice Λ)

 
 

Figure: Visualisation of this process.
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The Torus

Taking Mappings to the Torus

Propositions

Proposition 1

The translations in G form a lattice Λ such that

Λ = Z · ~t1 + Z · ~t2

Where ~t1 and ~t2 denote two linearly independent translations.
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Taking Mappings to the Torus

Propositions

Proposition 2

We are able to divide out the lattice Λ of translations of G from
the torus TΛ and the action of G on E2 ‘descends’ to an action of
G/Λ on TΛ.

Corollary

This also implies that Λ is a normal subgroup of G. Namely;

ΛE G .

Between these two propositions we are now able to take our
wallpaper groups and map them onto tori.
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Finite Invariance

CW-Complexes

What are CW Complexes?

In this application, we are using them to allow us to ‘glue’ in discs
to edges (boundaries) and to keep properties that we want.

Theorem

Finite CW-Complex Exist on the Torus.

Theorem

On compact topological surfaces with boundaries, there always
exists a finite CW Complex.
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CW-Complexes

Examples of other compact surfaces with boundaries includes:

1 Spheres,

2 Möbius strips and,

3 The Real projective plane.

So then these have finite CW-Complexes. A fact we will return to
later.



Wallpaper Groups from Scratch

Finite Invariance

CW-Complexes

Examples of other compact surfaces with boundaries includes:

1 Spheres,
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Finite Invariance

Visualisation

Glueings

Now we look to see some
examples of what this
CW-Complex process does to the
surface.

Here’s perhaps the
simplest example. We take this
plane with this striped pattern
about the reflection line in red
and fold it over onto itself.

→

Figure: Visualisation of the ‘folding’
of points by a reflection in the plane.

We can unfold it back to the original but in the meantime we have
captured the information we need from it in a more dense manner.
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Visualisation

Corners and Cones

Similarly then, two more examples.

→

Figure: Folding about a corner point.

→

Figure: Folding about a cone point.
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The Defect Formula

Euler and CW-Complexes

Fractional Euler Characteristics

We make a return to Euler characteristics but now we are
interested in what happens to it as a result of the impact of the
CW-Complexes.
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The Defect Formula

Euler and CW-Complexes

Cone points

If we have the following arrangement for a cone point of order 2:

 G 	

X Y

Figure: Topological spaces X and Y for the case of a Corner point of
order 2.

We can track its original Euler characteristic

χ(X ) = V − E + F = 7− 8 + 2 = 1

and the the Euler Characteristic of Y ,

χ(Y ) = 4− 4 + 1 = 1.
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The Defect Formula

Euler and CW-Complexes

‘Defects’

Then tracking the additional contributions brought about by
counting vertices and edges too many times. We have about the
central cone point:

χ(X ) = 1−
(

1

2
+

1

2

)
+ (a+ a)

=⇒ χ(X )

2
=

1

2
− 1

2

(
1

2
+

1

2

)
+ a

and looking at Y ,

χ(Y ) = 1− 1

2
+ a

But now we can see there’s a difference between χ(X )
2 and χ(Y )!

This is what we call the defect (in this case, χ(X )
2 = χ(Y )− 1

2 )
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central cone point:
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But now we can see there’s a difference between χ(X )
2 and χ(Y )!

This is what we call the defect (in this case, χ(X )
2 = χ(Y )− 1

2 )
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Euler and CW-Complexes

Corner Point case

Taking a quick look towards an example with corner points
involved.

 G 	

X Y

Figure: Topological spaces X and Y for the case of a Corner point of
order 3.
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Defects

Much the same, skipping to our ‘defected characteristics’.

χ(X ) = 1− 6× 1

2
+ 6× a, χ(Y ) = 1− 2× 1

2
+ a

Then

χ(X )

6
=

1

6
− 1

2
+ a = χ(Y )−

(
1− 1

6

)
+

1

2
= χ(Y )− 5

12

Which happens to look slightly different from before, but now is of
the form:

Defect for n-many corner points =
1

2
− 1

2n
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The Defect Formula

Calculating it

Now because we are acting on tori and orbifolds. We need not be
concerned with any difference of faces, so we have now found the
two ways in which we can alter the Euler characteristic and they
can be generalised as follows:

Definition

Let X be a compact surface, G 	 X the group acting on X and Y
the orbifold of this action. Then:

χ(X )

|G |
= χ(Y )−

∑
p· Cone points

of order n

(
1− 1

n

)
−

∑
p·Corner points

of order n

(
1

2
− 1

2n

)
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Classification of Compact Surfaces

We now have a mostly complete picture.

X = Torus G	
 orbifold Y .

But now we take use of the following theorem:

Theorem

“Every orientable compact surface is homeomorphic either to a
sphere or to a connected sum of tori. Every nonorientable compact
surface is homeomorphic either to a projective plane, or a Klein
bottle, or the connected sum of a projective plane or a Klein bottle
with some tori.” [Gallier and Xu, 2013]
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Types of Orbifolds

With this theorem we can now see that we have a few options for
our potential orbifolds, Y .

These are:

Disks,

Annulus,

Spheres,

Möbius strips,

Klein Bottles and

The Real Projective plane.
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How we use this theorem

By combining the defect formula with this theorem then we can
deduce a bound of sorts for our Euler characteristics and figure out
which surfaces we can map wallpapers to

, and how!

χ(Disk) = 1

χ(Annulus) = 0

χ(Sphere) = 2

χ(Torus) = 2

χ(Möbius strips) = 0

χ(Klein Bottles) = 0

χ(Real Projective Plane) = 1
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Brief aside to Orbifold Characters

We will simply list these explicitly with short descriptions:

1 Numbers added after an ∗ : Indicative of Corner points.

2 Numbers preceding an ∗ (if there is one) : Indicative of Cone
points.

3 × : Depicts the inclusion of a crosscap (making the orbifold
nonorientable).

4 ◦ : Depicts the inclusion of a handle.
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Candidates with χ = 0

We can then consider that any of the surfaces with χ = 0 work
without the use of neither corner nor cone points and these are
given as follows in orbifold notation:

Annulus, Möbius strips, Klein Bottles.
∗∗ ∗× ××

(This is also the case for the Torus, which has no cone or corner
points though has χ = 2 and is represented of course by just a
handle ◦.)
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Candidates with χ 6= 0

Then considering some other examples with non-zero Euler
Characteristic, there are a few ways to reduce theirs with corner
and cone points.

As follows:

Disk  ∗632, ∗442, ∗333, ∗2222
↓ ↓ ↓

4 ∗ 2 3 ∗ 3 2 ∗ 22
↓

22∗

In particular, we have for say, ∗632 corner points of order 6,3 and 2
respectively, hence

χ(∗632) =
5

12
+

1

3
+

1

4
= 1
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Candidates for the Sphere and Real Projective Plane

Similarly then for the sphere which has no corner points because
we have no boundary!

Sphere  632, 432, 333, 2222

and finally:
Real Projective Plane  22×

Between these then, we have found what we will determine to be
all 17 orbifolds!
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Some diagrams of possible Wallpaper Group

The Torus

Let’s start with the torus:

~t2

~t1

We have in this case that all translations generated by ~t1, ~t2 will
trivially produce wallpapers spanning the plane.
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Some diagrams of possible Wallpaper Group

A simple example on the disk with orbifold notation 4 ∗ 2.

21

21 4

←

21

21 21

21

21

21

21

21
= 4

We have around the central corner point of order 4, cone points of
order 2 in the cardinal directions which we can use to generate the
rest of the plane.
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Some diagrams of possible Wallpaper Group

Conclusion

We can continue to show that these exist for the remaining
orbifolds and exhaustively deduce that all seventeen proposed
candidates are indeed suitable wallpaper groups.
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Some diagrams of possible Wallpaper Group

The End!
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